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Preface 

In 1961, the Burroughs Corporation began producing a line of 
large scale computers whose organization was radically different 
from conventional von Neumann computers. From the beginning, 
these machines have both stimulated and puzzled many who at
tempted to study them, partially due to inadequacies in the needed 
factual and expository literature about their internal structure. 

The development began with a system called the B5000. A sub
sequent modification was called the B5500. In 1969, a major advance 
over the original system was completed and called the B6500. Since 
then, the B5500, which was still in production, and the B6500 were 
renamed the B5700 and B6700, respectively. 

The structure of these highly innovative systems was widely 
publicized, but, lamentably, not well understood. Since 1968, how
ever, when some technical descriptions of the B6500 system began 
to appear in the professional literature, interest has widened, re
flecting I believe, a growing concern for the fact that conventional 
computer organization has remained relatively unstructured-with 
the objective of being "general purpose"-in the face of an increas
ing appreciation that certain information structures are characteristic 
of the computations we normally perform with computers. In short, 
the looming question has been: How can (or should) computer sys
tems be organized to support, and hence make more efficient, the 
running of computer programs that evolve with characteristically 
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similar information structures? (The body of this book is an attempt 
to make this idea more concrete.) 

In many types of computer systems, increasing use is being 
made of virtual storage, which was one of the innovations of the 
B5000 System and has been an intrinsic part of the design of all 
subsequent Burroughs systems. I hope readers of this book will 
gain an historical perspective as well as a technical view of the 
Burroughs interpretation and implementation of this important 
concept. 

I have aimed the book at an audience consisting of compu.ter 
center directors, other computer professionals, and serious students 
in computer science who have an interest in the subject of computer 
organization. Although not designed as a textbook, this work may 
well serve for part of the reading in a senior or graduate course in 
computer system organization. Chapter 1 outlines the book's plan, 
so that one can decide, after reading this overview, if the material 
is likely to serve as suitable text material for such a course. I think 
it will. 

A word of caution is perhaps in order for my readers. I have tried 
to avoid unprovable claims and have made a reasonable effort to 
delete from the manuscript unjustifiable adjectives of praise for the 
B5700/B6700 design. Nevertheless, this book retains a natu.ral 
enthusiasm for the systems it describes. Complete objectivity in any 
study or exposition of this sort may be a goal that is achievable in 
an asymptotic sense only. Each reader must therefore apply his own 
1/ discount factor" in judging the merits of the opinions and con
clusions that I have expressed here. 

This book has benefited from the valuable assistance of ma.ny 
members of the Burroughs team who participated in the design 
and implementation of the B5700/B6700 systems. I especially wish 
to acknowledge the help received from David Bauerle, Stephen Bil
lard, J. G. Cleary, Benjamin Dent, John Keiser, and Don Lyle. I also 
wish to thank the Burroughs Corporation management, especially 
R. R. Johnson and J. F. Kalbach, for the opportunity and support 
to make this study, and R. S. Barton, my colleague at the University 
of Utah, who served the role of effective catalyst. This book is pub
lished with the permission of the Burroughs Corporation. In under
taking the study on which it was based, I did not underestimate its 
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difficulty, and make no pretense now that the book will prove as 
helpful to others as it has been for me. If indeed this effort does 
what I have set out to do, much of the credit should go to the reader, 
his patience, and his willingness to learn. 



CHAPTER 1 

An Overview 

For the past ten years the Burroughs Corporation has been 
designing and producing computer systems whose organization 
and whose hardware/software designs have been significantly dif
ferent and daring. These Burroughs systems have exhibited an 
organization consistent with a powerful semantic model for pro
gram execution, one that reflects a control structure (flow of control 
and addressing relationships) that is natural for, and hence one that 
facilitates, the execution of algorithms. 

Spurred by the birth of Algol 60 [44], the last decade was one 
in which great strides were made in understanding and exploiting 
the potential of block-structured programming languages for repre
senting complex algorithms, including large and small software 
systems [18,21,27]. Much has been learned about algorithms and 
ways to represent them in some fashion that would be optimal 
from the point of view of the man-program interface. With the 
exception of work on APL and related languages, nearly all recent 
work on syntactical and semantic design of programming languages 
has been based on the Algol 60 premise that (static) block struc
turing of algorithms, i.e., nested declarations, is a natural, if not 
requisite, form for the expression of complex algorithms (PL/1 
[34], Euler [61], Algol 68 [60], Gedanken [51], PAL [62], ... ,Bur
roughs extended Algol [12]). With the exception of isolated com
puter designs (KDF9 [22], Rice #2 [52], and SYMBOL [15,20, 53, 
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55]), few computer systems besides the Burroughs have yet to seri
ously cater for execution of algorithms expressed in such languages.* 

Interestingly enough, the same Burroughs systems have been 
among the first to offer effective multiprogramming and multi
processing-a goal of all of today's large computer systems and 
most smaller ones. 

The Burroughs designers viewed the algorithms for their oper
ating systems as inherently block structured and chose to code 
these algorithms in a language (an Algol 60 extension) that could 
reflect the structure. While to some others this choice may have 
appeared to impose unnecessary constraints for system develop
ment, the resulting products, measured in terms of throughput and 
flexibility (and related customer satisfaction), suggests that design 
"constraints" may really have been design opportunities [17]. 

The software/hardware developments of the B5700/B6700 pro
gression have in the author's view anticipated (or at least kept 
pace with) the natural growth in sophistication of our view of 
algorithmic processes, and that view of algorithms has grown as 
a direct result of successful efforts of Burroughs and others to 
design, then further understand, then redesign, etc. very large 
programs, especially operating systems and information utiliHes. 

It was common in the early 1960's to teach (in universities) that 
an algorithm is a sequence of procedural steps which, when coded 
in a higher level Algol-like language, could be structured as a set 
of nested blocks that defined the scopes of the algorithm's identi
fiers and dynamic resource requirements when executed on a com
puter. It may well be common in the 1970's, thanks to the efforts 
of computer science educators and researchers, and operating sys
tem and information utility designers [2, 4, 6, 8, 13, 14, 16, 24-27, 
30,32,37, 39, 46-48, 54, 56, 58] that we shall teach programming 
by stressing that an algorithm is a structure (often nested) of inter
dependent, normally asynchronous tasks, the task being the entity 
that models the 1960's view of an algorithm. The coding of an 

* The language APL [36] and close relatives such as LCC exhibit dynamic 
rather than static block structuring and as such are considered outside the 
scope of this book. Several research groups have reported on their efforts to 
build computer systems that cater for execution of algorithms in such lan
guages [1,7,31,57] and these are of interest. 
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individual task exhibits a structure that resembles in every respect 
an Algol (or PL/l) procedure but might also have additional steps 
to create, destroy, or synchronize with other such tasks. 

The Burroughs BS700/B6700 "progression" appears to have had 
as a major design goal the efficient execution of such algorithmic 
structures. It behooves (us) educators and scientists to ascertain 
the importance of this design goal and the extent to which Bur
roughs may already have achieved it-not just for the benefit of 
its operating systems but, by simple recursion, for the benefit of 
the system's users at any subsystem level. The principal purpose of 
this book is to offer through informal exposition a hopefully reveal
ing and fresh perspective of the B6700 (and by back reference the 
BS700), its general design and design rationale, and its relative 
potential as a computer system. The B6700 represents in some 
sense a best display (Le., an improved representation) of the cor
responding ideas in the BS700. In other respects, such as memory 
size and raw speed, the BS700 is simply a more limited version of 
the B6700. For this reason no explicit discussion of the BS700 and 
its comparison with the B6700 will be undertaken in this relatively 
short treatment. By a proper whetting of appetites, however, it is 
hoped to excite the reader into an activated state of inquiry for pur
suing further study of the B6700, its predecessor, the BS700, and its 
probable successors [2,3, 8, la, 12, 13, 14, 16,21,32,47,48]. 

The B6700 hardware I software architecture is interesting from a 
number of different points of view-not the least of which are its 
I/O hardware subsystem [48] and its information flow connec
tions (I/O crossbar matrix) between static (memory) modules and 
active (processor) units. Again, for the sake of brevity these aspects 
are not discussed since we proceed on the assumption that such 
features remain merely sidelights while the reader is still gaining 
a clear understanding and an appreciation of the B6700's central 
control structure, the why of it, and the how of it. 

As early as 1964, the BS700 operating system was a productive 
multiprogramming and multiprocessing system operating with 
only a 32,000 word memory and one or two processors. Starting 
from significantly different architectural designs, others have toiled 
to achieve or exceed Burroughs' success, sometimes on systems 
having far greater speed [18, 42, 43, 46, 56]. During this period 
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much has been learned about the technology and the underlying 
principles that govern multiprogramming and multiprocessing. 
Among the significant and perhaps best applied of these principles 
have been those based on the program property of locality and the 
consequent notion of the working set [23]. 

A program that exhibits a high locality of reference is one that 
"favors" a relatively small subset of its address spaces; i.e., in any 
given section of virtual time, an executing program is likely to make 
references within a comparatively small subset of the program sleg
ments. This subset is called the working set. (A more formal defi
nition of locality and working set has been given [23], but for our 
purpose we are content with the above informal expressions.) 
Denning has shown that the number of independent programs that 
can be effectively multiprogrammed in a fixed size memory, i.e., 
without undue thrashing, can then be expected to increase as wOlrk
ing sets (and the space required for them) decrease. Experience has 
shown [46,59] that multiprogramming improves if the worki.ng 
sets of active processes can be (continuously) monitored and main
tained in core memory when they execute. There are several points 
of .interest regarding working sets of B570o/B6700 computations 
that are worth thinking (and perhaps speculating) about. 

1. They exhibit strong locality. Working sets of such computa
tions are therefore made relatively easy to maintain in mem
ory while the task is active, because the procedures and the 
data components of the computation's information structure 
are the logical subdivisions identified by the programmer. 

2. The effective size of the working set tends to approach the 
theoretical size [i.e., the actual amount of core required to 
contain the working set tends to approach the (theoretic.al) 
minimum amount of core required]. This is because: 

(a) the computation's local data structure which grows and 
shrinks as needed is always kept in core memory while 
the computation is active; 

(b) only those code segments of the algorithm which are 
currently being accessed by the processors must be kept 
in memory while the computation is active; 
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(c) apart from certain system routines and tables shared by 
all active computations, the only other portion of the 
computation's information structure that must be kept 
in memory while the computation is active is a dic
tionary whose entries point to all of the computation's 
code segments. It is mainly the presence of this dic
tionary, normally small for small programs, which 
makes the effective working set exceed the (theoretical) 
minimum amount of core required. 

3. The processing cost for making demand insertions of new 
items (segments), possibly to replace others that are no 
longer in the working set, appears to approach lowest possi
ble values. (By "lowest possible" we refer to the number of 
logical addressing steps and not necessarily (physical) speed 
of processing.) This is because when a nonpresent code or 
data object must be obtained from secondary storage, the 
so-called "descriptor" that is accessed by the hardware to 
reach the desired target contains (directly) the address of the 
target in auxiliary memory, and not an address of an address, 
such as an address of a table that is to be searched for the 
desired address. 

If the author is correct in guessing that the B670o/B5700 hard
ware structure and selected storage representations offer these 
attractive properties in the maintenance of working sets, it is small 
wonder that effective resource utilization in these systems has been 
notable, and that throughput relative to that of the less-structured 
competing systems of comparable speed (and comparable I/O facil
ities, etc.) has been advantageous. Put another way, it becomes im
portant to pursue the conjecture that architectural design based on 
rational (semantic) models for the structure of computational pro
cesses, whose algorithms and records of execution are thought of 
and represented as nested structures, leads to computer systems 
with more effective resource utilization. The conjecture becomes 
even more interesting if it is the case that related factors associated 
with computer use, such as programming (and reprogramming) and 
the cost of program information sharing, protection, etc., not only 
do not suffer in tradeoff for the above multiprogramming advan
tages, but in fact strongly benefit from this design. 
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It is hoped that the reader will let his natural curiosity take him 
through the rest of this monograph and then on to further study of 
the B5700/B6700 so that he can draw his own conclusions. 

The design for the remainder of this monograph is as follows: 
we give a stagewise (top down) exposition of the B6700 control 
structure to show how algorithms are represented and executed. 
For this purpose, a series of cases is exhibited, then discussed. Each 
case includes snapshots of an algorithm at several (interesting) 
points in its execution. The snapshot is discussed in terms of the 
revealing conceptual model recently proposed by Johnston [37] 
(called the contour model), which helps us to focus on the structure 
of the algorithm (the invariant code part), the structure of the cur
rent "record" or state of its execution, the state of the processor, 
and the interrelationships among them. The series of cases and dis
cussions is designed to impart a cumulative (although by no means 
complete) understanding of the B6700's control structure as an 
implementation of a general model for algorithm execution. 

As we proceed, we shall discuss several ramifications of this 
hardware and supporting software architecture, pointing out some 
of its relative advantages and limitations. Although no explicit 
comparisons with other systems are given, it is hoped that readers 
who study the Burroughs concept and implementation of segm1en
tation, the resultant form of virtual memory, and the implications 
for certain types of controlled sharing of information will then 
find it easier to make their own meaningful comparisons with cor
responding concepts in other systems (e.g., Multics [18,46]). The 
same remark applies to comparisons that can be made with the 
tasking and interprogram communication facilities of other sys
tems [4,30,42,45,56]. 

The case studies alluded to above are covered in Chapters 2--6. 
Chapter 7 considers one potential limitation of the B6700, a discus
sion of which is motivated in the preceding chapters, while Chap
ter 8 considers certain other limitations actual and alleged and the 
system modifications that would remove such limitations. Chapter 9 
provides a more complete (and more detailed) view of B6700 hard
ware for those who will have found themselves ready for a deeper 
study. 
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The reader may have observed that this lengthy introduction is 
in danger of being concluded without mention of the word "stack." 
We remedy this situation here by observing that the hardware 
stack structures of the B570o/B6700 have been the key implementa
tion device for achieving hardware support for efficient and con
trolled execution of algorithms. There can hardly be a reader of 
this book who is not somewhat aware that stack mechanisms exist 
in the B57001B6700. However, many of our readers may not 
fully recognize how effectively Burroughs has been able to employ 
stack hardware to reflect an algorithm's static structure, and its 
execution record, and to build supporting hardware that exploits 
this storage representation for efficient execution, for recursive 
operating control, and for minimizing resource consumption. 





CHAPTER 2 

Block-Structured Processes and the B6700 Job 

We start by grasping the concept of a B6700 job, which consists 
of a time-invariant algorithm* and a tUne-varying data structure 
which is the record of execution' of that algorithm (Figure 2.1). The 
algorithm consists of a set of nonvarying code segments which are 
directly addressable (in the virtual memory sense). 

The record of execution is a multipurpose data structure which 
at any given time defines 

(a) the execution state of the job, including values for all varia
bles (scalar, arrayed, and structured); 

(b) the addressing environment (virtual address subspace) that 
a hardware processor serving this job may access, or pos
sibly several (overlapping) addressing environments, in case 
it is appropriate that more than one processor be permitted 
to execute in the job at the same time (multiple activity) i 

(c) the interblock/interprocedure/intertask flow of control his
tory (e.g., chain of calls). 

In its simplest view the hardware processor functions by maintain
ing a pair of pointers, an instruction pointer, ip, and an environ-

* In a more advanced view of a job, new code components might be attached 
to the algorithm during the course of its execution, but no component would 
vary (internally) in time. 
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Time-varying 
record of execution 

Figure 2.1 Snapshot of a B6700 job in execution. Schematic view No. 1. 

ment pointer, ep, for referencing the accessible portions o:f the 
record. 

Figure 2.1 suggests that the processor's instruction pointer is 
about to execute instruction P while the environment pointer, which 
points to region B' of the record, provides access to data in region 
B' during execution of P. Figure 2.1 implies that at some subsequent 
and/ or previous point in time ep might point to any of the other 
access regions of the record. 

Now, all B6700 programming is done in languages that are ,com
piled in the block-structured sense, * explicit examples of which are 
Algol and PL/l. For this reason, the concept of disjoint access 
regions suggested in Figure 2.1 is, in an important sense, under
constrained. A more authentic view is given in Figure 2.2, which 
suggests that the B6700 processor's accessing environment is a type 
of union of access regions, say of e', B', and A'. The nesting of 
these regions mirrors the nesting of program blocks, each defining 
the scopes (i.e., range of validity) of program identifiers. 

* Languages like Fortran may define only nonnested program blocks. Such 
languages can be regarded as degenerate examples of block-structured lan
guages. 
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Time-invariant 
algorithm 

11 

Time-varying 
record of execution . 

Figure 2.2 Snapshot of a B6700 job in execution. Schematic view No.2. 

Figure 2.3, for instance, shows the block structure and declara
tions of an illustrative Algol program. To the right of the program 
a "contour" schematic suggests an alternative representation that 
thrusts into bolder relief the scopes of the declared identifiers. Fig
ure 2.2 can be regarded as a snapshot taken when the B6700 
processor is about to execute an instruction at the statement labeled 
P of the program of Figure 2.3. This snapshot suggests that the 
environment pointer, now shown as a display, EP, which is a vector 
of pointers, will point to the record regions C', B', and A'. (The con
cept of display will be treated momentarily.) These access regions 
of course correspond respectively to sections (blocks) of the pro
gram whose corresponding scopes (contours) are named C, B, and 
A. [A prime-labeling convention (e.g., A' and A) is adopted to 
relate record contours to their corresponding code blocks.] 

Cells associated with the identifiers c and d are contained in 
region C' ; the cell for b is contained in region B', and the cell for a 
is contained in region A'. These cells are effectively accessed by 
name. 

In the conceptual approach we may well view a reference to a, 
while executing the statement labeled P, to be a quest for the cell 
allocated for a. Such a search can be satisfied by an outward scan 
of the record regions C', B', and A', terminating on the first en-



12 2 BLOCK-STRUCTURED PROCESSES AND THE B6700 JOB 

Line 
No. 

o begin 
1 integer a, b i 

:} the real procedure, rnd 

10 begin 
11 integer b, Ci 

25 
26 

begin 
integer c, di 

29 P: a +- a X b + C X rnd(d); 

34 end 
41 end 

52 begin 
53 integer b, C i 

Q: 'VVVVVVV 

64 end 

72 begin integer c, d; 

91 end 

104 end 
Algol text 

C 

o 

Contour structure 

Figure 2.3 Block structure and declarations of an Algol program with cor
responding contour structure. 

counter of a cell named a. Likewise, a search for b will succeed 
during a scan of B'. Note how the cell named b in A' is therefore 
quite "invisible" (and therefore inaccessible) to the processor when 
it is executing the instructions at P. Figure 2.4 is an enlargement of 
the schematic record of execution shown in Figure 2.2 to show the 
cells allocated for all identifiers at that particular stage of execution. 
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Record of execution 

A' 

Figure 2.4 Record of execution while the program is executing at the state
ment labeled P. Contour model view in detail. 

Of course, in the actual implementation no search is required be
cause each identifier is renamed as an (i, j) pair, where i is a block 
height (nesting level in the program) and j is an ordinal number 
that refers to the jth identifier declared in the block [50]. 

A program may gain a second site of activity by asking for exe
cution of a designated procedure as a task rather than as a sub
routine. Figure 2.5 illustrates this concept in contour model terms 
and suggests how two (or more) processors may share the same 
code and (parts of) the same record of execution. The accessing 
environment for the second processor is defined by the display 
pointing to record regions D' and A', assuming the ip points to 
the instruction labeled Q shown in Figure 2.3. 

Since region A' is common to the environments of the two pro
cessors, some locking discipline for achieving mutual exclusion is 
assumed to be employed. Programs that can support two (or more) 
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Invariant algorithm Record of execution 

A 

Figure 2.5 Snapshot of a B6700 job in execution with two processors. Con
tour model view. 

processors have been called multiple activity algorithms [38]. Al
though an operating system is itself probably the best known and 
most important example of such algorithms, our case study ap
proach is mainly confined to simpler examples. 

A program that can support two (or more) processors need not 
have allocated to it more than one actual processor in order to exe
cute effectively. A single processor can be shared among (sched
uled to serve at) several sites of activity, first being assigned to 
execute at one site, then at another, etc., achieving the same effect 
as if there were concurrent execution at several sites but at greater 
elapsed time. 

A program can still be viewed as one involving multiple proces
sors (one per site of activity), as suggested in Figure 2.5, if one 
regards these processors as virtual (or pseudo) processors. Each 
such virtual processor is then simply a datum that defines a site of 
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activity and that maps onto the hardware register structure of an 
actual processor whenever the latter is scheduled to execute at that 
particular site of activity. Put another way, an actual processor can 
be "passed around" among the virtual processors as needed, using 
an effective scheduling discipline. In the B6700 the "activation," 
i.e., assignment, of a virtual processor to an actual processor (and 
vice versa) is accomplished by a single instruction. 

Tasks 

Most of the simple programs we write (certainly those we have 
been accustomed to writing) never have more than one site of 
activity (at a time). The flow of control is sequential. The site of 
activity, i.e., the pair (ip, EP), changes dynamically, but one such 
(ip, EP) pair is sufficient to define the process' state of execution. 
Procedure calls and returns (recursive or otherwise), as well as 
coroutine calls and returns (recursive or otherwise) fall in this cate
gory of single site of activity. A second (or third, etc.) site is cre
ated when a program executes a designated procedure as a task. 
Completion of the task is one way that a site of execution may be 
terminated (destroyed). Tasks may also be temporarily suspended 
so they may later be reactivated. 

The discipline surrounding the management of sites of activity, 
i.e., tasking, is discussed at some length in later portions of this 
book. In the terminology of tasking, the snapshot in Figure 2.5 can 
be interpreted in the following manner: The principal task is exe
cuting at program point P with access environments C', B', A'; a 
secondary or "offspring" task, spawned at some prior stage of the 
program's execution (perhaps as a call to create and execute a task 
at line 28 of the program in Figure 2.3) is now executing at pro
gram point Q with accessing environments D', A'. 





CHAPTER 3 

Basic Data Structures for B6700 Algorithms 

3.1 INTRODUCTION 

We are now ready for a closer look at the B6700 data structures 
that a:re suggested in Figures 2.2 and 2.5. The code for a B6700 
algorithm is segmented into blocks, as suggested in Figure 3.1. 
Each block-structured language has its own syntax for use in de
limiting such blocks. (Algol 60, for example, uses begin, end pairs 
for program blocks and procedure, "; " pairs for procedure blocks.) 
The code for each block is stored as ;t physically separate segment. 
Each entry in the segment dictionary serves as a segment pointer 
(or descriptor.) Only segments which are actually part of the speci
fication of a site of activity (Le., for an active processor) need be 
present in physically addressable memory. [All segments of the 
algorithm are, of course, present in the virtual memory of the algo
rithm. A "presence" bit in each segment dictionary entry is sensed 
by the hardware address-formation mechanism. If this bit is off 
when the descriptor is accessed, a hardware interrupt occurs which 
delays further execution of the algorithm until the system locates 
the desired segment (normally) in auxiliary storage and transfers 
it to addressable core memory.] 

When the flow of control moves from one segment to another 
in the algorithm, the hardware accesses the segment dictionary to 
acquire the base address of the desired segment as found in its de-
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To record 

Figure 3.1 Showing how the code for an algorithm is physically segmented 
into blocks, each block pointed to by a descriptor in the segment dictionary. 

scriptor. Thereafter each succeeding instruction in the same seg
ment is accessed as an offset from this base. At first, we show the 
ip as a 2-tuple, the first component (3 in this case) being the offset 
into the segment dictionary, and the second component (j) as the 
offset within the segment. (Later the ip will be represented as a 
triple.) Thus, line '129" in Figure 2.3 can be thought of as being 
mapped by the compiler to the pair (3, j). Figure 3.1 suggests how 
the base address of the segment dictionary is determined, i.e", via 
a pointer that is pragmatically regarded as being part of the display 
ubundle." 

The B6700 data structure for a record of execution takes the form 
of a stack structure. Figure 3.2 shows the stack structure for the 
record suggested in Figure 2.2. Stacks in this book are drawn 50 

that they grow downward rather than in the more conventional 
(cafeteria style) upward direction. Nevertheless, we shall still refer 
to the cell containing the most-recently stacked element as the 
Utop" of the stack and to the cell containing the least-reCl~ntly 

stacked element as the base or Ubottom" of the stack. This depar-
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Figure 3.2 Snapshot taken while executing at point P in the algorithm of 
Figure 2.3. 

ture from convention allows one to gain a more direct visual cor
respondence between the growth of the stack and the normal top
to-bottom instruction sequence of a block-structured program text. 

There are three sections in the stack corresponding to the three 
contours of the current access environment for the instruction P. 
Randell and Russell, in the description of their Algol 60 implemen
tation [50] call each stack section an activation record. Whenever 
execution enters a new block of the program, another activation 
record is allocated in the stack segment and appended (Le., pushed) 
on to the top of the stack and back-threaded via link words to 
predecessor records in two ways. One thread (the static chain) 
shows the static linking of the records, i.e., to define the nesting of 
environments. The second thread (the dynamic chain), whose ele-
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ments are denoted as dc, is not drawn explicitly but would, coinci
dentally, in this case be similar to the static chain. Upon block 
exit or procedure return, the accessing environment must be re
stored (reset) so that the topmost activation record designated by 
the EP bundle is that for execution in the immediately containing 
block or in the calling procedure, respectively. Links in the dynamic 
chain provide the information necessary for the processor to make 
this environment adjustment (including deallocation of activation 
records) when executing block exits and/or procedure returns. 

As for the two additional display components, one points to the 
segment dictionary-as already mentioned-while the other points 
to the base of another area that is related to the work of th,~ sys
tem's supervisor. This area, termed stack trunk [14] contains, 
among other things, the descriptors of all the supervisory code 
segments and system tables. For example, interrupt handlers whose 
descriptors reside in the stack trunk are accessed through the dis
play pointer to the stack trunk. As a convenience, a simple, stan
dard indexing scheme is used to distinguish the particular d:lsplay 
elements. Thus, Do is the name for the stack trunk pointer; Dl is 
the name for the segment dictionary pointer; D2, Ds, and D4 in this 
case serve as pointers to activation records that define the rest of 
the processor's accessing environment (Le., regions A', B', and C'). 

Note, therefore, that the record level associated with the outer
most block of any algorithm is always (arbitrarily) 2. The number 
4 shown in the EP display box of Figure 3.2 simply signifies the 
index of the highest nonnull display pointer, there being 32 ele
ments (Do through D:n) in the actual hardware display vector. 

Figure 3.3 is a composite view of the algorithm, the stack strw:
ture, and the processors for the execution stage depicted in Fig
ure 2.5. Examining this figure will provide us with additional pre
view of the subject of tasking that is treated in the next chapter. 
A few points may be noted. 

The activation record associated with execution by the offspring 
task in the block called D is back-threaded via static link to the 
record for block A. Display register values are redundant but 
highly accessible copies of the static link values. Indeed, whenever 
a virtual processor is mapped onto an actual processor [i.e., when
ever a processing unit is uawarded" to a task (site of activity) so 
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Figure 3.3 B6700 data structure showing the algorithm, and its structured 
record of execution, now consisting of two stacks, the segment dictionary, and 
the stack trunk. Display vectors of the two processors point to addressing en
vironments "topped" by activation records for C' and D' at (display) levels 
4 and 3, respectively. The first three display vector elements in each vector 
have identical values. 

c 
d 
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it can execute], the display registers for that processor are loaded 
by copying the static links. [Only the address of the topmost: ele
ment in the display vector is not a copy of a static link. Only this 
address, therefore, need be saved as status from the display when
ever an actual processor is awarded to another task within the 
same job or (to a task of another job).] Because record D' has no 
dynamic antecedent (also true of A'), its dynamic (chain) back 
pointer is (conceptually) null. 

3.2 OPERAND STACKS 

Our data structure view of the B6700 is still considerably over
simplified. For one thing, we have not considered the fact that 
every processor needs some scratch pad memory space for holding 
operands that are intermediate results needed to evaluate expres
sions. How much space is needed for such a processor-related pur
pose is dependent on the complexity of the expression. Comp:ilers, 
of course, can determine in advance the amount of temporary stor
age that would be needed for anyone simple expression evaluation. 
Note, however, that any digression in the middle of the expression 
evaluation, say to compute the value of some function to be used 
as an operand, will force some sort of a pushdown of the tempo
raries developed thus far so as to "make room" for new temporaries 
that may be required to compute a function value. For example, in 
the expression a X h + c X f(g), where f(g) = k X g + U X'D, if 
evaluation proceeds from left to right, then at the very least the tem
porary, tI, representing the value of a X h, would have to be s.aved 
while the processor was producing a value for f(g), evaluation of 
which requires its own temporary storage. 

At the conceptual level the problem of where to save the tempo
raries may be solved by associating a separate pushdown stack 
with each virtual processor, as suggested in Figure 3.4. In any 
actual implementation of this concept, however, it is attractive to 
employ the top portion of the "current" activation record as an 
operand stack, and this is indeed the approach taken in the BS~700/ 
B6700 implementation. We illustrate by again considering the state
ment labeled P in the program suggested by Figure 2.3. That state
ment is 
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P: a~a X b + c X rnd(d); 

where rnd is a random-number-generating function that is assumed 
to be a function procedure declared as a separate block (but not 
shown) in lines 2-10. Executing a reference to rnd causes compiler
generated code to create a new activation record, thereby saving 
the processor's temporaries for use upon return from rnd. 

Figure 3.5 is an elaboration of Figure 3.2 to suggest the new 
condition of the stack segment while executing in rnd. Here we 
lift the curtain to reveal a few more of the details in the B6700 
data structure. In doing so, we gain as a byproduct an introductory 
exposition of procedure cans, a topic that is developed further in 
the next two subsections. 

1. First, notice that the activation record for rnd is indicated 
as containing return information (first entry after the rec
ord's link word). To return to a caller, a processor needs a 
return label, which is in essence a 2-tuple, of the form (ip, 
ep). Here ip is the position in the program that is one instruc
tion beyond the point of call, and ep is a pointer to the (top
most) activation record employed by the caller. In returning 
to block C, the processor must also be able to reset other 
state variables, if any (e.g., various flip-flops), to their con
ditions prior to entering rnd. In the B6700 implementation, 
all this return information, including that which we have 
called the return label, is constructed and saved by the pro
cessor in the first two slots (words) of the activation record. 

o 

Operand 
stack 

for temporary 
storage 

n 

Figure 3.4 Virtual processor with an associated operand stack. 
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Figure 3.5 Executing the functional reference to rnd, which is assumed. to 
be declared within block A of the algorithm. Lines marked @ are dynamic 
links. Lines marked 0 are static links. 

Note that ep of the return label is the value of the dynamic 
chain link (dc) indicated as part of the record's link word. 

2. Second, notice that the ip is now shown as the triple (1,1, u). 
It was previously shown as a 2-tuple. This added detail is 
given to clarify the way program point addresses are defined, 
but not necessarily how program points are accessed. The 
first element identifies the table holding the target instruc-
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tion's segment descriptor (1 means segment dictionary; 0 
means stack trunk). The next two elements identify the seg
ment in terms of the offset (1) relative to the segment table 
(the segment dictionary in this case) and the offset (u) rela
tive to the base of the target segment. 

When execution "enters" a segment (i.e., when the hard
ware instruction enter is executed), one hardware register 
is loaded with the base address of the segment as extracted 
from its segment descriptor (found either in the segment 
dictionary or stack trunk) while another pair of hardware 
registers (not shown in our diagrams) is used as an instruc
tion counter. (On each execution cycle, the hardware forms 
the byte address of the next instruction by summing the 
values of these registers.) 

3. Third, observe that the activation record is dynamically 
linked to that of block C but statically linked to that of A, 
since rnd is declared in block A of the algorithm (shown in 
Figure 2.3). In contour terms, the accessing environment for 
rnd must be the one in which the record contour for rnd is 
(immediately) nested, and this contour is that of A. Observe 
how the EP display has been appropriately adjusted. 

3.3 TREATMENT OF SYSTEM INTRINSICS 

Suppose that rnd were not declared within the algorithm as sug
gested in Figure 2.3 but rather that rnd is a function recognized 
by the compiler as a system routine (referred to in Burroughs liter
ature as a system intrinsic)), whose code segment is pointed to from 
the stack trunk. Figure 3.6 shows the data structure that would then 
be developed for execution within rnd. System intrinsics are treated 
as if declared within procedures that execute at display level zero. 
Hence, system intrinsics always execute at display level 1 (one 
level higher than the level of their declaration). Figure 3.6 thus 
shows that the activation record for rnd is statically linked to the 
stack trunk. To avoid cluttering the diagram, the static link from 
A' is not shown. That link also reaches the stack trunk, though 
indirectly, via a link word in the segment dictionary. 
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Figure 3.6 Executing the functional reference to md, which is assumed to 
be a system intrinsic. Lines marked @ are dynamic links. Lines marked CD 
are static links. 

3.4 BLOCK EXITS AND RETURNS 

Figure 3.7 shows the snapshot taken just after completing execu
tion of the statement labeled P. In returning from rnd the top 
pointer of the EP display is again at level 4, pointing at C'. In effect, 
the activation record, rnd', has been deallocated. The processor has 
stored a new value in the cell labeled a in the record A'. If any 
new temporaries are needed in the course of executing other state-
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Figure 3.7 After completing execution of the statement labeled P. 

for a 

ments in block C, they will be pushed onto the top of the stack as 
part of C' (where the record rnd' once resided). 

Notice that a return from a function call (and the same would 
be true for a simple exit from a block) is accompanied by what can 
be interpreted as an act of deallocation. In Algol 6o-like languages, 
this association of de allocation with returns (or exits) has its roots 
in the semantics of the language [37,44,58]. Note, for instance, 
that after return from rnd to block C the data items kept in rnd' 
are no longer "defined." Conceptually, such undefined items are no 
longer accessible to the processor. An act of deallocation, done by 
nullifying the processor's top display register, as in a simple block 
exit, is tantamount to making the record for that block inaccessible. 

3.5 PROCEDURE CALLS-GENERAL 

The approach to procedure call implementation has already been 
introduced indirectly in the foregoing discussions of Figures 3.5-3.7. 
Here we take a head-on look at the subject. 

We select another model program, Figure 3.8, as a basis for dis-
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integer j, n; real result; 
array num [0: 99]; 
procedure sumitl(a, s, 1, sum); 

sumitl 
value s, 1; integer s, 1; array a[*]; real sum; 
begin 

integer i; 
sum ~ 0; 
for i ~ s step 1 until 1 do sum ~ sum + sqrt(a[i]); 

end 

[input value of n (~100) and the set {numj, for j = 0 step 1 
until n -I}] 

sumitl(num, 0, n - 1, result); 
print(result) ; 

end 

Figure 3.B Program for use in discussing procedure calls. Scoping lines at 
the left of the code are labeled A and sumitl to correspond with the hlocks 
of the program. 

cussion. The program shows one explicit procedure call on the sys
tern's intrinsic sqrt and another on the declared procedure surnitl. 
Whether declared explicitly or implicitly, the compiler must gen
erate a calling sequence that includes a reference to the target (pro
cedure) segment. When executed, this reference is employed in. an 
attempt by the processor to gain execution access to the ta:rget. 
Since it is the record of execution that defines the valid accessing 
environment for the processor, the compiler must specify the point
ers to all called procedures such that during execution these point
ers may be appropriately placed within the proper activation record 
used by the processor. The B6700 way of reaching this objective is 
suggested by a snapshot series shown in Figures 3.9-3.11 for the 
case where execution of the algorithm in Figure 3.8 is about to exe
cute line 11, is about to execute line 9, and is about to complete 
execution of line 12, respectively. 
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Figure 3.9 Snapshot of Figure 3.8 program execution just before executing 
line 11. Six data values for the num array are assumed to have been input as 
a result of executing line 10. (The symbols k and j represent entry-point offsets 
within the code segments for sumitl and block A, while the symbols t and u 
represent offsets within the stack trunk.) 

Upon entering block A, the record A' that is placed in the stack 
must (among other things) include pointers to all procedures that 
are explicitly declared in block A of the algorithm, i.e., the pointer 
to sumitl. Each such pointer is in essence an (ip, ep) label pair. The 
environment pointer component of the label defines the immediate 
environment within which the target procedure is to execute. In the 
B6700 representation, explicit ep values are, however, unnecessary, 
since the positioning of each procedure pointer within its appropri
ate activation record is tantamount to defining the addressing envi
ronments of the respective procedures. 

Thus, the procedure pointer for sumitl, located in the activation 
record A' and shown (3, I, k), in essence specifies the display level 
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Figure 3.10 Snapshot of Figure 3.B program execution just before executing 
line 9. (Symbols k and v represent entry-point offsets; symbol r represents the 
offset for the current instruction within the code for sumitl; and symbols 
t and u represent offsets within the stack trunk.) 

(3) at which sumitl will execute, the segment number (I), and off
set (k) within the algorithm's code file. The segment number (1) 
gives the offset (always) in the segment dictionary where the seg
ment descriptor for the target segment can be found. Readers 
should note that although the procedure pointer triplet, e.g., 
(3, I, k) and the ip triplet, e.g., (I, I, r) have for convenience been 
shown in similar syntax, their respective semantics are diffe:rent. 

In addition to the link word, called a Mark Stack Control lIVord, 
or MSCW in B6700 terminology, each activation record contains a 
word of return information, called a Return Control Word (RCW), 
immediately following the link word. The return label consists of 
an (ip, ep) pair, where the ip is contained within the RCW and 
the ep is in essence the dynamic link, dc, of the MSCW. 
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Figure 3.11 Snapshot of Figure 3.8 program execution just before complet
ing the execution of line 12. (Shading for certain of the blocks is discussed in 
Section 3.7.) 

3.6 HARDWARE INTERRUPTS AS HARDWARE
FABRICATED PROCEDURE CALLS 

Perhaps the most significant simplifying design achievement of 
the B6700 has been the natural exploitation of the stack structure 
just described for the handling of hardware interrupts. Such inter
rupts were viewed conceptually by the B6700 designers to be 
merely unexpected procedure calls. This view has been fully 
realized. 

When an interrupt signal is sensed by a hardware processor, 
it executes (through microcode) an enter instruction to a standard 
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instruction address (ip) after first pushing a hardware-fabricated 
activation record onto the stack currently employed by that pro
cessor. The net effect is that when the "called" interrupt handler 
begins executing, it does so with a well-formed record of execution. 
That record is linked dynamically to the record of the interrupted 
procedure. Return information in the new record points back to the 
ip which represents the next instruction that would have been exe
cuted had not the interrupt occurred, and the formal parameters 
within the activation record have been given hardware-supplied 
values that define the nature of the interrupt. 

The interrupt routine can examine the parameters and on the 
basis of their values call "specialist" handler routines for further 
processing, as required. If the special routines execute returns to the 
primary (system) interrupt handler, the latter will in turn execute a 
return to its" caller," which in this case is the interrupted procedure. 

System interrupts need have nothing to do with the current pro
gram. The interrupt may, for example, represent an I/O complete 
signal that is quite independent of this computation. On the other 
hand, process interrupts (related to this task) such as arithmetic 
overflow, divide check, presence bit, etc. can also be processed 
effectively. In either case the interrupt routine executes at display 
level 1. 

By using the present stack and fabricating ordinary procedure 
calls in the manner just described, there is minimum overhead cost 
expended in saving and restoring the state of the interrupted pro
gram. Figure 3.12 shows snapshots immediately after a system 
interrupt that is assumed to occur just before executing line 9 of 
the Figure 3.8 program. The (assumed) name of the system inter
rupt routine is into Figure 3.12 may he compared with the snap
shot in Figure 3.10 which is the situation immediately before the 
assumed interrupt. 

3.7 SMALL WORKING SETS 

A few other observations concerning the B6700 data structure 
are in order here. Note that the num array is not allocated as part 
of the stack structure. Only a descriptor to this array is kept (in 
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Figure 3.12 Snapshot of Figure 3.8 program executing after a system in
terrupt while the processor was getting ready to execute line 9. (See Figure 
3.10 for snapshot immediately prior to this interrupt.) The interrupt procedure 
int executes at display level 1. Its activation record is statically linked to the 
stack trunk where it can access procedure pointers to other system procedures 
"declared" at level O. 

the record for block A). Since all references to the num array's ele
ments must be made (indirectly) via the array descriptor, and since 
this descriptor has a presence bit that is sensed by the hardware, 
then the array itself need be present in core memory only when the 
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program is making frequent references to it. By allocating data 
arrays and the stack segment separately, the stack can be kept small 
in size, thus minimizing the amount of core storage required for 
the record of execution in order to run the program. 

This raises the interesting question: Just what portion of the 
job's address space does need to be present in core memory for 
effective execution? Well, of course, the answer must be phr.ased 
in terms of a particular snapshot of that job's execution. 

Common to every job's execution there is some group of key 
supervisory procedure and data segments that will always be~ re
tained in core. These include the interrupt handlers, etc., memory 
allocation routines, perhaps some key I/O routines, all supposedly 
pointed to from the stack trunk. Apart from these "wired down" 
segments, what else? 

We illustrate with the case shown in Figure 3.11. Shaded seg
ments represent portions of the address space that must be kept in 
memory at the instant of that snapshot (for that program). Note 
the key roles played by the stack trunk, the segment diction.ary, 
and the stack segment, in keeping the working set so compact. In 
essence, these three segments hold the descriptors (with presl~nce 
bits) that point to all other segments that may be referenced by 
the job at this time. A descriptor is so formatted that if its pres
ence bit is off, the remainder of the descriptor contains enough 
information to locate the missing segment (on disk) without first 
consulting intermediate tables of referenced information. 

The stack trunk, though large, is actually shared by all jobs, and 
the segment dictionary is quite small for small programs, e.g., stu
dent programs. The minimum working set size, therefore, is dE~ter
mined mainly by the current size of the stack segment and the size 
of the currently executing program block. As a practical matter, 
however, the working set would also include those segments of the 
program and those system intrinsics that are frequently executed in 
the current flow-of-control pattern followed by the job-and also 
any arrays or portions thereof which may be frequently referenced. 

Primary descriptors to arrays (and to other structured variables) 
are kept in the activation record. But the descriptors to substruc
tures (also with presence bit sensitivity) are kept in intermediate 
arrays, i.e., "dope vectors" for the case of two-dimensional arrays. 
Treating arrays in. this fashion tends to keep to a minimum the por-



3.8 SHARING PROGRAMS AND DATA 35 

tion of an array (or other structure) that must be kept in core at any 
one time. Readers will note that many hardware paging techniques 
[23] also permit the subdividing of arrays into blocks, not all of 
which need be allocated concurrently in primary memory. But, such 
paging techniques are usually restricted to a fixed number of fixed
size blocks, whereas the B6700 system permits use of blocks whose 
number and size are arbitrary (and hence, blocks that can more 
closely match the actual structure of the array). 

3.B SHARING PROGRAMS AND DATA 

To judge the incremental demand for core memory placed on the 
system by a job like that pictured in Figures 3.8-3.11, one needs to 
keep in mind several possibilities for program and data sharing in 
the B6700 (more sharing means lower incremental demands for core 
memory): 

1. Two or more jobs may execute using the same algorithm 
(but on different data). For instance, one can picture several 
requests for printouts of current stock quotations (or current 
bank balances). Jobs for the several customers, each request
ing that identical programs (code files) be executed, get to use 
the same segment dictionary and, of course, the same code 
segments. To be sure, the individual jobs have different exe
cution stacks (records of execution). Since the code is pure 
and reentrant, there need be no synchronization among jobs 
that use identical 1/ code files." The average working set size 
for such filial jobs (or rather, Siamese twins, triplets, etc.) 
tends to decrease with the size (number of jobs) of the 
"filial set." 

2. Jobs may also share data arrays in three ways: 

(a) Descriptors for read-only data segments may be kept in 
the segment dictionary and hence shared by members 
of a filial set of jobs as with procedures. Depending on 
the block structure of a single job, such data segments 
may also be shared among tasks of the same job. 
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(b) Any data array, read-only or otherwise, can be shared 
among separate sibling tasks within a single job if their 
separate execution stacks were passed the same de
scriptor from their father task. Here again, such shar
ing, whenever it is frequent, serves to lower the average 
(effective) working set size of jobs or tasks. 

(C) A task ubudded" at any level has access to any descrip
tor owned by a (static) ancestor task at any lower level. 
It therefore has access to any information referenced by 
stich a descrIptor. This concept is illustrated in the next 
case study (in Chapter 4), where we consider two tasks 
within the same job that share the same array. 

When data arrays are shared through different stack-based de
scriptors, special B6700 hardware operators are employed to give 
partial assistance in record-keeping, i.e., to see that descriptors to 
the same array are all properly updated whenever the location of 
the array or its attributes, e.g., its size, or its very existence, is 
altered. 



CHAPTER 4 

Tasking 

4.1 CREATION AND COORDINATION OF TASKS 

A specific example of a program that gains a second site of 
activity is illustrated in Figure 4.1. The overall objective of the 
algorithm in this figure is identical with that of the Figure 3.8 
algorithm, but the internal structure is modified so that half the 
work of summing is delegated to an offspring task that functions 
asynchronously (e.g., can in principle function concurrently) with 
the principal task. 

Lines 3, 5, 10, 14, and 16 reflect most of the new syntactical 
units required to achieve a simple, synchronized, tasking objective. 
At line 3 a variable, evl, of type event is declared for use as the 
basis for synchronization. A matching formal parameter called 
done is declared in line 5 for the procedure sumit2. (Line 3 declares 
a null event that serves a.s a "syntactical dummy." We imagine it 
is required for matching done in the call on line 15.) 

To request that sumit2 be executed as a separate (but related) 
task, a new syntactical construction is needed. Burroughs Algol 
[12], for instance, employs the key word process to distinguish a 
task call (line 14) from an ordinary procedure call (line 15). The 
task call pa.sses the actual parameter evl (by reference) to sumit2, 
so that the offspring task, an instance of sumit2, may signal the 
main task when the former has completed its work. The B6700 
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Line 
No. 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

begin 
integer j, ni real resultl, resuIt2i 
array num[O: 99]i 
eVj!nt evl, nf{ll; , 
procedure sumit2(a, s, I, sum, done) i 

4 TASKING 

value s, Ii integer s, Ii real sumi array a[*] i !' ~'fj~~ 
begin 

integer ii 
sum~Oi 

for i ~ s step 1 until I do sum ~ sum + sqrt(a[i]) i 
cause(done); 

end sumit2 

13 [input value for n ~ 50 and {numj, for j = 0 step 1 until 
2Xn-l}] 

14 processsumit2(numr n, 2~ X~: 11 ~"-1~xe5y,lt~~;~~'li~lY! 
15 sumit2(num, 0, n -~ 1, resultl, n'ull) i~"~ '~", 

16'ljJaif«(!'Ql) i 
17 print(result1 + result2}"i 
18 end 

Figure 4.1 Program for use in discussing multiple sites of activity. Shaded 
sections reflect new syntactical units required to achieve a simple, synchronized 
tasking objective. 

system intrinsic cause (on line 10) is used for this purpose. After 
executing the ordinary procedure call to sumit2, and passing it a 
null reference for the formal parameter, done, the main task exe
cutes a call to the system intrinsic wait (on line 16). Wait returns 
to its caller when and if the actual parameter, ev1, attains a value 
that may be interpreted as: "The event has happened." Upon return 
from wait, the algorithm calls for the printout of the sum of two 
values, resultl and result2, each value representing half of the re
quired work (the first half having been accomplished by the main 
task and the second half having been accomplished by the offspring 
task). 

Variables of type event are structured. One field in this structure 
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4.0 
6.9 
1.2 
0.8 
0.4 
1.1 

Figure 4.2 Simplified snapshot of the Figure 4.1 program just after creating 
the offspring task (at line 14). (The symbol ptr represents a procedure pointer 
whose form is discussed in Section 3.5.) 
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is a binary switch called the "happened" bitl which is set to not 
happened initially and later set to happened when the cause intrin
sic is executed. The rest of the structure for an event variable is 
best explained in terms of several execution snapshots. These snap
shots and the accompanying discussion are provided to illuminate 
the semantics of tasking. 

Figure 4.2 gives a snapshot of the Figure 4.1 program just after 
the main task has created its offspring. The processor for the main 
task is pictured as about to execute line 15 of the program while 
the processor for the offspring is pictured as about to execute line 6. 
Each has its own EP displaYI the one for the offspring being--in 
this rather simple example-a copy of the parent's display to which 
has been adjoined a display element that points to the new taskls 
"very own" stack at level 3. 

The processors depicted in Figure 4.2 are virtual ones. They may 
or may not be currently mapped on to actual B6700 CPUls. In any 
casel they are ready to be so mappedl i.e.1 ready to runl whenever 
this form of physical activation can be accomplished. The execution 
state (variable) of a virtual processorl e.g. 1 ready or waiting for 
some event to happenl can be thought of as attached to the 1'ro
cessorl as suggested in Figure 4.2 orl as in Figure 4.3 1 to the stack 
of the task it now "serves. II 

Figure 4.3 reflects the actual B6700 implementation. The stack 
created for each new task begins with a task description area (of 
fixed size)1 following which is placed the first activation record. 
A combination of hardware and system software prevents access 
to this area except by supervisory programs. One of the key pieces 
of information in this special stack area is a thread (Q) by which 
a task may be linked to a list head that defines the queue state of 
the task. If the task is readYI Q thread is link-listed (lines marked 
CD) to a ready (R) head located in the stack trunk. Employing this 
list the system supervisor is able to choose (schedule) tasks to be 
run. 

Figures 4.4-4.6 picture three possible snapshots of subsequent 
execution. In Figure 4.4 it is presumed that the main task has 
"speeded" through its work faster than its offspringl so the main 
task has reached and has executed line 16 while the offspring is 
just now reaching the cause at line 10. Figure 4.5 shows the effect 
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Stack for 

task 

t------I Q thread) ~escrip
hon area 

Stack for 
offspring 
task task 

t--------1.1Q thread} ~escrip
hon area 

Figure 4.3 Showing how the stack for each task is threaded onto a ready 
list (lines marked CD), the head of which, R head, is kept in the stack trunk. 
Threading for each task is through a (one-per-task) queue thread (Q thread). 
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resultl 
result2 

evl 

Q thread 

done 

Figure 4.4 When the main task has executed the call to wait on the occ:ur
rence of event eVI, whose value is liN" (for not happened), the Q thread for 
the main task's stack is disconnected from the ready list and threaded onto a 
wait list, whose head word (W head) is in evl. (See the line marked ®.) Only 
the offspring task about to execute line 10 remains connected to the ready list 
(line CD). 
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Stack for 

Figure 4.5 The offspring task, by executing in cause, has changed the value 
of the event variable evl) to "H" for happened via the parameter done that 
was passed to cause as an argument. (See line marked @.) The main task will 
now be able to resume by returning from wait. Lines marked ® indicate 
various static links. 
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of the offspring having executed line 10 but not line 11. Figure 4.6 
shows the effect of the offspring having executed line 12, i.e., exit 
from sumit2, which, in the case of a task, amounts to task termina
tion, since the return label is null. 

In Figure 4.4 we see what happens when a task executes a wait 
intrinsic and the named event has not happened (liN"). 

The main task has executed 

wait(evl}; 

When wait discovers that the value of evI is liN," the Q-thread 
element is deleted from the ready Q (line CD) and linked into a wait 
queue whose head is a substructure of the evI variable (line ®). 

In Figure 4.5 we see what happens when a task causes an event. 
The cause intrinsic gets a copy of the value of done as its parame
ter, which, in turn, is a pointer to the (globally defined) variable 
evI i cause has no trouble setting evI's happened state to happened 
(line 0). As a second step, cause, which is privileged to tinker with 
the Q threads, rethreads the main task's Q thread onto the ready 
list (line CD). Lines marked ® in this figure are static links that 
define the respective addressing environments of the two tasks. 

The return label for sumit2 in the offspring stack has been 
marked null to suggest task termination when the processor for 
the offspring executes the procedure exit at line 12. In concept, 
such an exit is equivalent to a go to null statement. In the actual 
B6700 implementation the return slot of the first activation record 
of every task is not given a null value, but rather the entry point 
of a system control procedure (whose own activation record is then 
fabricated and pushed onto the stack trunk). This system procedure 
deallocates the task's stack (and any other resources associated 
exclusively with this stack) and thus terminates the task. Figure 4.6 
is, therefore, a stylistic interpretation to connote the offspring task's 
demise. 

4.2 TASK ATTRIBUTES 

To gain greater control and/or communication among a family 
of tasks (those "started" by and including a common ancestor), 
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Figure 4.6 The offspring task has reached its terminus by executing line 12. 
Its ip and EP values are now (effectively) null. The main task has printed the 
results referred to in line 17 and is about to execute line 18 which will be its 
terminus (a block exit for which ip and EP are both effectively null). 

each task is endowed with a structured task variable whose com
ponents define various attributes of the task. 

The task variable is associated with the task at its creation and 
a syntactical facility has been provided to achieve this objective. 
Thus, strictly speaking line 14 of the Figure 4.1 algorithm was im
properly coded since no task identifier variable was indicated to be 
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associated with the created offspring task. A correct coding in Bur
roughs Algol would require that line 14 be coded, for instance, as: 

process summit2(num, n, 2 X n - 1, result2, ev1) [charlie]; 

Moreover, an appropriate declaration, i.e., 

task charlie i 

would be inserted, say at line 2.5, to indicate that the identifier 
charlie is a variable of type task. 

The task variable has a fixed structure so that it can be and is 
allocated into the task information area of the task's stack at the 
time the task is born. 

Although the task information area is normally off limits in the 
accessing sense, tasks are afforded controlled access to the task 
variable substructure via what amount to "caretaker" intrins:ics. 
Some task attributes are given initial values that are fixed for the 
life of the task. Others may be altered by the task itself, while still 
other attributes of a task may he altered only by certain other tasks 
of the family, e.g., parents. 

A selected subset of the task attributes that are employed in the 
current B6700 implementation is discussed here. For convenience, 
the description is given in terms of the syntax now employed in 
Burroughs Algol. 

Suppose a main task is coded to create an offspring and la.ter 
make reference to task attributes of that offspring. Code such as 
the following might then appear in the main task portion of the 
algorithm. 

Line 
No. 
2.5 task charlie i 

14 process sumit2(num, 2,2 X n - I, result2, evl) [charlie]; 

In addition, various attributes could be.....assigned to charlie before 
it is started. For example: 
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Line 
No. 
12.1 charlie. priority ~ 5 i 
12.2 charlie.maxproctime ~ 20 i comment in seconds; 
12.3 charlie.stacksize ~ 28 i 

47 

Lines 12.1-12.3 are intended to suggest that the system recog
nizes a subset of task attributes, initial values for which can be 
supplied by the creator task. Values for these attributes can then 
be noted and employed by the system's scheduling algorithm or 
other resource management modules. When any job is initiated, 
initial attributes for the main and/or only task of that job may be 
supplied by the user via control cards (Le., at command level). In 
this way the user may specify attributes of his main task just as 
code in the main task may specify initial attributes for its offspring, 
or offspring for its offspring, etc. 

The attribute status reflects the current execution state of the 
task [e.g., scheduled, running (active), suspended, terminated]. 
This attribute can be queried by any task in the family for which 
the task identifier (charlie) is "visible," e.g., its creator, itself, or 
any descendants for which charlie is global. In addition, these same 
tasks are able to write in the status variable, thus forcing charlie to 
be suspended, terminated, etc. 

Some task attributes are provided so the system can log opera
tional information, e.g., processor time and I/O time so far ex
pended, time of day that the task was begun, etc. 

Several key attributes have been defined for tasks to be used in 
achieving special interrelationships among tasks. Four of these 
attributes are status, exceptiontask, exceptionevent, and partner. 
They are explained here and their use is illustrated in Section 4.3. 

Exceptiontask and exceptionevent are used, for instance, to alert 
a task, A, that there has been a status change for a given (descen
dant) task, B, or for any of a group of (descendant) tasks, B, C, D, 
etc. 

To see how each of th.ese attributes is employed, suppose we 
imagine that task A causes a change in its own status attribute, 
using the known task id, myself, e.g., 

myself.status ~ /I suspended" i 
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The immediate effect of this statement is merely to request (of 
the system) a change of the task's status attribute to a new code 
value. But, eventually, the system's scheduling machinery will take 
note of this request (when it next attempts to ready task A, assum
ing some time-sharing or multiprocessing discipline is governing) at 
which time the system will change the status value of task A and 
will actually suspend task A. (Only another task that is apprised 
of this suspension can reverse this action.) 

The system reacts as follows upon noticing a change in task A's 
status: Task A's exceptiontask attribute, which is interpreted as a 
task identifier, is used by the system to notify that target (task) of 
the status change for A. Let the target task so identified be task B, 
which is perhaps the immediate ancestor of task A. Now, task B 
has associated with it its own structured task variable, one of whose 
components is B.exceptionevent. This component is an event varia
ble (automatically declared and initialized to UN" by the sysbem). 
Upon noticing a change in status for A, the system causes B.excep
tionevent, i.e., the exceptionevent "belonging" to the task designated 
by A.exceptiontask. If B had been waiting for this event, B would 
now be readied and allowed to resume. Note that any other t.asks 
that happen to be Q-threaded, i.e., wait-listed, on B.exceptionevent 
will be correspondingly alerted. Thus, the net effect of a myself. 
status change can be to alert a series of other tasks (broadcast) that 
may be waiting to learn of this occurrence. In Chapter 6, when we 
discuss software interrupts, we will see then that an alternative 
effect of causeing an exceptionevent can be to have the notification 
take the form of interrupts. 

In the B6700 implementation, the task that starts charlie (or any 
task that can "see" charlie's task variable) can act like charlie's 
supervisor or big brother, because such a task (besides charlie him
self) can write as well as read charlie's status attribute. Let pete be 
any task that can see charlie's task variable. Then: 

l. Depending on charlie's status, pete can activate, suspend, or 
terminate charlie. 

2. If charlie has been suspended by virtue of executing a condi
tion handler invoked by some hardware-detected processing 
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fault, e.g., a floating point overflow, pete can read some of 
charlie's attributes and attempt a diagnosis of the trouble. 
Among the attributes that are useful for such diagnosis is 
the stoppoint attribute, which is the ip of the (charlie's) last 
executed instruction. 

We see that pete is able to control charlie's execution state via 
charlie.status and charlie can alert pete to a change in the former's 
status. 

If no initial value is assigned to charlie.exceptiontask, then pete, 
the task that starts charlie, is the exceptiontask for charlie by de
fault. But note that charlie.exceptiontask can be altered afterwards, 
either by pete or by charlie himself. Thus, in the latter case, a state
ment like 

myself.exceptiontask ~ brothertom; 

is a way for charlie to let the task named brothertom "look after 
him." The intent of such a statement is equivalent to, "In case I 
am suspended, do not tell my parent, tell brothertom." In this way, 
two or more tasks can establish one another as watchguard of one 
another (e.g., A is the exceptiontask for B, and vice versa). 

The partner attribute enables tasks to relate to one another not 
as asynchronous computations but as coroutines, i.e., synchronous 
computation. For example, tasks A and B can act as coroutines if 
A.partner = Band B.partner = A. Then, when task A executes a 
statement like the Burroughs Algol: 

continue; 

the effect is to stop executing A and resume executing B at the 
point that B last executed a continue statement. Since the partner 
attribute is read/writeable, anyone task can select a new partner 
(as in a dance 7) by reference to a task variable when it next gets 
a chance to execute. 

Three or more tasks can relate to one another as co routines, for 
instance, forming a ring (or daisy chain), e.g., A.partner ~ B, B.part
ner~' C; C.partner ~ A. 
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One scheme for coroutine communication has been implemented 
so that a programmer can override the partner attribute by naming 
any task variable in the continue statement. Thus, 

continue ( C) i 

means relinquish control to C as a coroutine (regardless of who my 
current partner happens to be). In such a case, C would resume exe
cuting at the point following the last continue that it executed. 

4.3 ILLUSTRATIVE PROBLEM 

Here we shall select a simple problem whose solution "invites" 
use of tasking and thus illustrates some possible uses for task varia
bles and a number of the task attributes whose semantic interpre
tation was given in the preceding section. Readers who were satis
fied with the previous explanations may skip over this section 
without loss of continuity. 

4.3.1. The Problem* 

Consider three identical stream controllers that interact w:ith 
one another in a manner to be stated below. Each controller moni
tors flow of a stream, which may be thought of as a fluid such as 
oil or water (or as a granulated material such as grain, or as a 
stream of numbers). Each controller permits the stream it controls 
to flow into a tank (or bin or accumulator). The controller is capa
ble of knowing the cumulative flow into its tank because it is able 
to continuously meter the stream quantity that is admitted. 

What is of interest is that each controller tries to maintain an 
input rate that is related to the input rates maintained by the other 
controllers. In short, by "cooperating" with one another, the con
trollers try to admit the same stream quantities (approximately, that 
is) that the other controllers are admitting to their respective tanks. 

Write a computer program that models this situation by assum
ing that the fluid being controlled in anyone stream is a series of 

* Approximately as the author recently posed it to some undergraduate 
students. 
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integers, read at (an essentially) constant rate from an input file. 
For simplicity, also assume that a controller A meters its stream 
simply by generating the sum of the integers that it has input (thus 
far). Call this sum SA. 

Controller A is capable of knowing what has been input (in the 
cumulative sense) by the other controllers because it is able to 
access SB and SC, the sums generated by controllers Band C. 

Then controller A can periodically check to see if the condition 

SA > SB and SA > SC true (1) 

is satisfied, and when it is, shut off the flow into its tank. In so 
doing, we assume that A can effectively notify at least one of the 
other two controllers of its action (suspension). If condition (1) is 
not satisfied, A can continue to meter "fluid'" into its tank. 

We picture that each controller works in the manner described 
above. A controller A should shut down completely (i.e., terminate 
operation) when it has sensed that SA > INMAX, where INMAX 
is some given limit. Satisfying this condition should also signal 
termination of the computation as a whole. Prior to termination 
however, there should be (periodic) output which displays the triple 
(SA, SB, SC) whenever any controller finds that it must shut off 
its stream temporarily, i.e., whenever the controller finds that con
dition (1) is satisfied. 

4.3.2. Three Possible Solutions 

Figures 4.7-4.9 are three possible solutions. Readers are invited 
to examine these and then develop (at least) one or more of their 
own. Figure 4.7 shows a way of using status and exceptiontask 
attributes. In Figure 4.7 notification is always round robin, i.e., A to 
B, B to C, and C to A, when a given controller finds that it is "ahead 
of" the other two. Notification is achieved by forcing the target 
task out of its suspended state. A task that has suspended itself, 
as on line 12 of Figure 4.7)' can be unsuspended* only by help from 
another task-normally its exceptiontask, as on line 11 of Fig
ure 4.7. 

* The literals "suspended" and "wakeup" are intended to represent the 
integer codes that are interpreted by the software to mean suspended and 
unsuspended, respectively. 
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Line 
No. 

1 begin 
2 integer SA, SB, SC, INMAX; task A, B, C; event doneABC; 
3 procedure controllerl(sl, 52, 53, n, done); 
4 value n; integer 51, 52, 53, n; event done; 
5 begin 
6 integer VAL; label L; 
7 L: if 51 > 52 and 51 > 53 
8 then begin 
9 [print values of 51, 52, and 53 in appropriate columns 

10 of a table, based on the value of n] ; 
11 (myself.exceptiontask).status ~ "wakeup"; 
12 myself.status ~ "suspended"; 
13 go to L; end 
14 else begin 
15 [input a value of VAL from input file n] ; 
16 51 ~sl + VAL; 
17 if 51 < INMAX then go to LeIse cause(done); 
18 end 
19 end controllerl 
20 
21 A.exceptiontask ~ B; 
22 B.exceptiontask ~ C; 
23 c.exceptiontask ~ A; 
24 [input a value for INMAX]; 
25 SA ~ SB ~ SC (:- 0; 
26 process controllerl(SA, SB, SC, I, doneABC)[A]; 
27 process controllerl(SB, SA, SC, 2, doneABC)[B]; 
28 process controllerl(SC, SA, SB, 3, doneABC)[C]; 
29 wait(doneABC); 
30 end 

Figure 4.7 Stream controller problem programmed using asynchronous 
tasks. Note the use of exception task, exceptionevent, and status attributes. 
Mutual notification among tasks A, B, and C is round robin. 

In Figure 4.8, notification is to the controller that is "farthest 
behind." It is not obvious which of the two strategies (Figures; 4.7 
and 4.8) is better from the point of view of trying to keep consis
tently as many as two controllers at a time busy inputting stream 
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Line 
No. 
1 begin 
2 integer SA, SB, SC, INMAXi task A, B, Ci event doneABCi 
3 procedure controller2{sl, s2, s3, n, done, t2, t3) i 
4 value n; integer sl, s2, s3, n; event done; task t2, t3; 
5 begin 
6 integer VAL; label L; 
7 L: if sl > s2 and sl > s3 then begin 

53 

8 [print values of sl, s2, and s3 in appropriate column of a 
9 table, based on the value of n]; 

10 if s2 < s3 then t2.status ~ "wakeup" 
11 else t3.status ~ "wakeup"; 
12 myself.status ~ "suspended" ; 
13 go to L; end 
14 else begin 
15 [input a value of VAL from input file n] ; 
16 sl ~ sl + VAL; 
17 if sl < INMAX then go to Leise cause{done); 
18 end 
19 end controller2 
20 
21 [input a value for INMAX]; 
22 SA~SB~SC~O; 

23 process controller2{SA, SB, SC,l, doneABC, B, C) [A] i 
24 process controller2{SB, SA, SC, 2, doneABC, A, C) [B]; 
25 process controller2{SC, SA, SB, 3, doneABC, A, B) [C] i 
26 wait{doneABC); 
27 end 

Figure 4.8 Stream controller problem programmed using asynchronous 
tasks. (Programming is similar to that of Figure 4.7.) Mutual notification 
among tasks A, B, and C is based on helping the hind-most. 

values-given that there are at least two hardware processors avail
able for service. (Of course, at the very outset, all three controllers 
are allowed to start working concurrently, but very quickly it will 
be the case that the average number of controllers working drops 
below two.) Readers may find the problem of selecting a notifica
tion strategy an interesting problem for study. 

Figure 4.9 displays what might be regarded as a logically simple 
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Line 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

begin 
integer SA, SB, SCi task A, B, C; 
procedure controller3(sl, 52, 53, n, t2, t3); 

value n; integer 51, 52, 53, n; task t2, t3; 
begin 

integer VAL; label L; 
continue; 
L: if 51 > 52 and 51 > 53 then begin 

4 TASKING 

[print values of 51, 52, and 53 in appropriate columns of a 
table, based upon the value of n]; 

if 52 < 53 then continue( t2) else continue ( t3) ; go to L; ,end 
else begin 

[input a value of VAL from input file n]; 
51 ~sl + VAL; 
if 51 < INMAX then go to L else continue; 
end 

end controller3 

19 SA ~ SB ~ SC ~ 0; comment the following line is actually 
superfluous; 

20 A.partner ~ myself; B.partner ~ myself; c.partner ~ myself; 
21 call controller3(SA, SB, SC I, B, C)[A]; 
22 call controller3(SB, SA, SC, 2, A, C)[B]; 
23 call controller3(SC, SA, SB, 3, A, B) [C]; 
24 continue(A); 
25 end 

Figure 4.9 Stream controller problem using coroutines in place of asyn
chronous tasks. Note use of the partner attribute. 

solution-using coroutines. If on the average only one processor is 
available for service, the coroutine approach may prove attractive. 
Note that when first called, the coroutine is programmed (in con
troller3) to continue (back to the main task) as soon as it has been 
created. In this way, the main task is able to set up (establish an 
addressing environment for) all three coroutines before starting up 
any of them. 

Upon completion of this setup, the main task continues to co-
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routine A (line 24). From here on out, control moves sequentially 
(and synchronously) among tasks B, C, and A, using a help-the
hindmost strategy, until one of the coroutine controllers fails the 
test in the line 15 if statement and continues to its. partner. Since 
all three coroutines have the main task as partner-in-common, then, 
whosoever issues the continue on line 15 causes the main task to 
resume at line 25 and end it all. 

Several other read/write task attributes have been defined for 
use as shared data cells, purely for the convenience of the program
mer, e.g., for sending short messages between tasks. For instance, 
one such attribute called locked is of type Boolean; another, called 
taskvalue, is of type real. 

The foregoing survey of task variables, their attributes and uses 
for intertask control and communication is admittedly incomplete. 
Nevertheless, it is hoped readers can see the powerful tools offered 
to the programmer for construction of complex subsystems having 
families of tasks. A good bit of the versatility and control seems 
to be derived by virtue of the block structure nature of the program 
in which such task families are coded. The B6700 hardware is, of 
course, keyed to this block structure. 





CHAPTER 5 

Stack Structure and Stack Ownership 

5.1 THE CRITICAL BLOCK CONCEPT 

Consider a task family such as that depicted in Figure 5.1 and 
the treelike stack structure that represents the records of execution. 
The statically linked set of activation records defining the access
ing environment of anyone (offspring) task extends over two or 
more separate stacks. 

The highest display-level portion of the environment for an off
spring task depicted in this figure is found in the stack associated 
with that task. These access regions connect to access regions at 
lower display levels through as many separate stacks as are re
quired to include the root or main stack of this job. Only the first 
of these stacks (for which the display level is highest) is directly 
associated with the given task. It is the one that uniquely identifies 
or associates with the virtual processor that executes this task. One 
may choose to speak about the task as owning this stack of highest 
display level. Correspondingly, the other stacks in this task's ac
cessing environment con be thought of as being owned, respec
tively, by each of the task's ancestors. Thus, in the example of 
Figure 5.1, the m.a.a-stack can be said to be owned by the task 
named m.a.ai the m.a-stack, which holds part of m.a.a's access 
environment, is owned by m.a, etc. It is also true that the stacks 
making up one accessing environment for a task need not all be 
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m.a.a m.a.b m.a.c 

Figure 5.1 Family trees and corresponding B6700 stack structure. Shaded 
activation records might represent the accessing environment for task m.a.a 
at some stage of its execution. Numbers inside the individual stacks are: used 
(in the text) to reflect individual activation records. (a) A job's (family) tree of 
tasks. (b) B6700 stack structure schematic. 

interrelated in the ancestral (or father-son) sense that was discllssed 
in Chapter 4. The discussion in this section is deliberately simpli
fied, however, by making this assumption for the case illustrated in 
Figure 5.1. (In the following paragraphs, therefore, the term, parent 
or ancestor, is to be interpreted as antecedent in the static link sense 
and, coincidentally, also in the tasking sense.) 

Not all of each stack owned by an ancestor need be part of a 
given task's accessing environment. Thus, in Figure 5.1 only activa
tion records 4, 3, 2, and 1 of the m.a-stack are assumed to be stati
cally linked into m.a.a's addressing environment, 

If a task such as m.a.a is to execute to completion, its accessing 
environment, whatever it may be, must be preserved throughout 
the duration of that execution. An interesting question arises, how
ever, when we consider the situation that could occur, say, if task 
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m.a were terminated before task m.a.a completed its chores. If ter
mination of a task is accompanied by de allocation of its owned 
stack (m.a-stack), then part of m.a.a's accessing environment would 
disappear, leaving m.a.a unable to compute properly since many of 
its globally defined values would be lost. (The same problem could, 
of course, be rephrased in terms of a termination of task m.) 

A somewhat more subtle situation might also give rise to a loss 
of (part of) m.a.a's accessing environment. Suppose task m.a exe
cutes a-series of procedure returns (asynchronous of any action on 
m.a.a's part) such that activation records 7, 6, and 5 in m.a-stack 
are now deallocated. This is no problem as far as m.a.a is con
cerned. But, at the instant record 4 is also deallocated, m.a.a will 
have been catastrophically affected. The block or procedure that 
m.a executes, whose activation record is record 4, is called m.a.a's 
critical block (and record 4 called a critical activation record) rela
tive to m.a. Once the record for a task's critical block (a record in 
its parent's stack) is deallocated, the offspring can no longer exe
cute effectively. We see, therefore, that what is really critical for a 
dependent task to be able to continue is not whether the parent is 
merely alive but whether or not the parent is still executing in the 
critical block (or in one of its dynamic descendants). In order to 
simplify the remainder of this discussion on tasking, we shall delib
erately couch our remarks simply in terms of the life or death exis
tence of the parent (Le., as if the stack for the parent never has 
more than one activation record in it). 

One of two stack management disciplines is open to the system 
designer to prevent a task from executing with a (partially) deallo
cated accessing environment. 

1. Preserve a stack-even after the demise of the task that 
owns it-so long as at least one of the offspring tasks "lives" 
(see, for example, papers by Johnston [37] and Berry [6] for 
a full discussion of the "retention" discipline), or 

2. When a task terminates (or is terminated), then (also) termi
nate all its offspring tasks. With this approach, not only 
could the stack owned by a task that is being terminated be 
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safely deallocated, but the stacks of any offspring tasks could 
be deallocated as well. The current B6700 implementation 
follows discipline 2 for two reasons: 

(a) Philosophical. Since offspring tasks are regarded as 
dependent rather than independent activities, it would 
seem that their separate existence (after the demise of 
their immediate ancestor) cannot be justified. If a. task 
must have a truly independent existence, it can and 
should be initiated and executed as a separate job (or 
as part of a separate job) in the system. (Any program 
can initiate a separate job.) 

(b) Sociolo gical. The semantic specification of tasking as 
currently defined in PLf1 follows discipline 2. Some 
attempt to maintain compatibility with the tasking 
semantics of this widely used language, which was his
torically the first to include detailed specification for 
tasking, seems appropriate. 

In the B6700 implementation the tasking is, of course, a system
provided facility so it is available to programmers in a number of 
the higher level languages offered as part of the system software. 

5.2 DEPENDENT VERSUS INDEPENDENT TASKS 

The matter of which discipline to choose is not entirely academic. 
For example, Figure 5.2, a variant of the program in Figure 4.1 
exhibits a simple case where an ancestor may well complete its 
work (terminate) before its offspring does, leading to a potentially 
disastrous consequence. In the new example program, the main 
task creates an offspring to execute the procedure sumit3, which 
does the same work as sumit2, but prints its result rather than 
ureporting" it to its ancestor (by assigning the result to a glo1bally 
defined argument and notifying him via cause). 

In an environment of multiprogramming on a multiprocessor sys
system, whether the main task of Figure 5.2 will complete before 
or after the offspring completes its task is indeterminate. As can 
be seen, there is no explicit programming to synchronize execution 
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Line 
No. 
o begin 
1 integer i, ni 
2 array, num [0: 99] i 
2.5 task charlie; 
3 procedure sumit3(a, s, I, id) i 
4 value s, I, idi integer s, 1; array a[*]; string idi 
5 begin 
6 integer ii real sum; 
7 sum~O; 

8 for i ~ s step 1 until 1 do sum ~ sum + sqrt(a[i]); 
9 print(id, sum); 

10 end sumit3 i 
11 [input value of n (~50) and {numj, for i = 0 step 1 until 

2Xn-l}] 
12 process sumit3(num, n, 2 X n - I, "uppersum") [charlie]; 
13 sumit3(num, 0, n - I, "lowersum") i 
14 end 

Figure 5.2 A program with two tasks that are not synchronized. 
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of these two tasks, nor in principle is there any need for synchroni
zation in this case. Nevertheless, if discipline 1 were followed, the 
relative speeds of the two tasks would be immaterial, whereas if 
discipline 2 were followed, the program would work well if the off
spring task finishes first, or if it finishes in a udead heat" with its 
ancestor, but works poorly (i.e., not at all) if the main task finishes 
first. (For, if main finishes first, the activation record at level 2, 
which contains key values and pointers needed by sumit3, would 
be lost.) 

Ultimately, a choice of stack-management disciplines must rest 
on what is meant by task dependence and independence. It can be 
argued that the Figure 5.2 program is a good example of the mis
application of a useful tool, i.e., that sumit3 should have been exe
cuted not as a dependent task but as an independent task, i.e., as 
another job. In the B6700 implementation, a task of one job can 
indeed start up a new job and hand over to that new job a set of 
parameters (call-by-value only) in such a way as to make the new 
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job's existence independent of the subsequent (life or death) history 
of the first job" 

It must be conceded, however, that as of 1972 there has hardly 
been amassed any abundance of applications programming experi
ence with tasking for use as a pragmatic basis in deciding on the 
type of stack management discipline that should be used-whether 
using PLf1 or any other programming language. It turns out that 
either discipline is in fact relatively simple to implement in the 
B6700 system for the following reason: 

As currently implemented, execution of a block exit will some
times be achieved by a compiler-generated call to a system routine 
called blockexit. (This will occur when, at compile 'time, it is evident 
that system action at block exit will be wanted.) One of the respon
sibilities of this routine is to interrogate a variable associated with 
the given block, called criticalblockcount (cbc), which is a count 
of still-active offspring tasks created during this activation of the 
block being exited. The condition, cbc > 0, is currently treatedl as 
a programmer error, and the exiting task and all its offspring tasks 
are terminated. Of course, this termination is accompanied by the 
display of a suitable error message. By requiring that all block exits 
be compiled as calls to the blockexit routine, stack retention disci
pline could be implemented simply by treating the condition, cbc > 
0, as an indication that the block-exiting task should call the wait 
intrinsic, i.e., put itself to sleep until an event is caused when 
cbc = O. As it happens, there is a single global (systemwide) event 
that is caused when any task is terminated. The system code re
sponding to this caused event, it would appear, can employ this 
opportunity to wake any sleeping tasks that are waiting for their 
respective criticalblockcounts to become zero. 



CHAPTER 6 

Software Interrupts 

6.1 INTRODUCTION 

To round out the B6700 facility for intertask communication, 
the system designers have provided a software interrupt [12, 16] 
capability which every (systems and applications) programmer is 
free to exploit as he desires. A software interrupt models a hard
ware interrupt in nearly every respect. Recall that a hardware inter
rupt was thought of and implemented as an unexpected procedure 
call. 

In the case of a software interrupt, the signal is issued normally 
by another task in the task family*; the recipient (of the interrupt) 
will have designated and defined (in advance) the procedure that 
should be executed upon receipt of the interrupt signal. The recip
ient task is free to ignore such signals by temporarily (or perma
nently) disabling a software interrupt, which is in almost strict anal
ogy with current practice of permitting the masking of hardware 
interrupts. If the recipient task is not actually executing at the time 
the software signal "arrives," the system supervisor, acting on 
behalf of the would-be recipient, will effectively queue the inter
rupt signal so that an interrupt will be triggered the next time the 

* Tasks belonging to separate jobs can also signal one another through 
globally defined system events. Communication between independent tasks, 
however, is not treated in this book. 
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recipient is awarded an actual processor to run on, provided that 
interrupt is currently enabled. 

The B6700 implementation of the software interrupt facility is 
a relatively simple extension of the cause procedure (intrinsic) that 
has already been described. Recall that cause as previously de
scribed merely placed onto the ready queue any task that is cur
rently link-listed to a given event variable. Suppose, however, it 
is desired that a task should be interrupted (rather than readied) 
upon occurrence of a given event. In this case, the task would be 
programmed to execute a special (interrupt) declaration and associ
ated statements whose effect is to associate designated procedure 
code with a given event variable, link-listing this task to any others 
which may also wish to be interrupted upon occurrence oJ this 
same event. Let the event variable we are speaking of be called ev. 
Then, when and if some other task executes a statement such as 

cause(ev) ; 

or possibly 
cause(x); 

where x is some formal parameter that refers to ev, all tasks that 
are queued to ev in the I-want-to-be-interrupted sense will be inter
rupted if they are now running on some processor, or will be 
marked for interruption when next they execute. Of course, all 
tasks that are queued to ev in the I-want-to-be-readied sense will 
be readied. [Note that the set of tasks queued for interruption and 
the set of tasks queued for readying on the same event are not nec
essarily disjoint sets. Note also that while two or more tasks; may 
ask to be interrupted upon occurrence of the same event, each task 
is also free to specify distinct procedure code to be executed when 
that common event occurs.] 

For example, the interrupt declaration used in B6700 AlgQlI has 
the form: 

interrupt (name of interrupt procedure); (statement); 

Thus, 

interrupt iI; begin ... end; 

defines the code to be executed for interrupt il. 
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An interrupt procedure may be attached to an event variable by 
a statement of the form: 

attach (name of interrupt procedure) to (event variable) i 

For example, the code: 

event eVi 
interrupt iI; begin ... end; 
attach iI to ev i 
enable iI; 

declares the interrupt procedure iI, associates it with (Le., attaches 
it to) the event variable e'lJ, and enables il. Thereafter (assuming il 
remains enabled), any time ev is caused, procedure il will be exe
cuted as an interrupt procedure. It is possible to disable il by exe
cuting the statement: 

disable iIi 

The default state of il is enabled. Of course, it is also possible to 
dissociate (Le., detach il from ev by executing 

detach iIi 

after which any (other) event may be attached to il. 
In the next section we give an illustrative example that shows 

the use of software interrupts and that helps us to focus on one 
of the typical problems associated with them. This problem is 
discussed at the end of this chapter. 

6.2 AN ILLUSTRATIVE EXAMPLE 

The program in Figure 6.1 illustrates the use of the software 
interrupt feature just described, together with one use of a task 
variable. Task synchronizing abetted by use of the wait intrinsic is 
also illustrated. In this program, our final variant of the Figure 3.8 
algorithm, the main task delegates (all) the summing of square 
roots to a task tl that executes a procedure sumit4 (at line 8). While 
tl proceeds asynchronously, the main task busies itself with other 
matters (lines 29-33). The main task waits (at line 34) for comple
tion of fl. Meanwhile, if t1 runs into any trouble (negative values 
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Line 
No. 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
lla 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 

34 
35 
36 
37 

60 
61 

begin 
integer j, n, negcount; real total, result; 
array num [0: 99]; label abort, fin; 
event ev1, neg, tlresume; 
task tI; 

6 SOFTWARE INTERRUPTS 

procedure sumit4(a, s, I, sum, done, holler, resume); 
value s, 1; integer s, 1; real sum; array a[*]; 
event done, holler, resume; 
begin integer i; sum ~ 0; 

for i ~ s step 1 until 1 do 
if a[i] < 0 then 

begin cause(holler); wait(resume); 
reset(resume); sum ~ 0 end 

else sum ~ sum + sqrt(a[i]); 
cause(done) 

end sumit4 

interrupt i1; begin 
total ~ total + result; 
negcount ~ negcount + 1; 
if negcount > .05 X n 

then 

end; 
attach i1 to neg; 
enable i1; 

begin terminate(t1); go to abort end; 
cause(t1resume) ; 

negcount ~ 0; total ~ 0; 

[input the value of n and the set {numj, for j = 0 step 1 until 
n -I]} 

process sumit4(num, 0, n - 1, result, ev1, neg, tlresume) [U]; 
} other useful work 

wait(ev1) ; 
print(result, negcount, II an appropriate comment"); 
go to fin; 
abort: print("negcount too high. task t1 aborted") 

} alternate plan 
fin: 

end 

Figure 6.1 A program that exhibits conversational control between two tasks. 
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of numi discovered at line 10), it interrupts the main task and then 
waits for orders from the main task in response to the interrupt. 
This coding is shown on line 11. The event parameter holler is used 
to cause the interruption of the main task via the interrupt il i the 
parameter resume is an event to which task t1 queues itself (thus 
moving to a wait state). If the main task is interrupted by t1 (il is 
always enabled in this illustration), the interrupt code checks to 
see if the cumulative number of negative num{ s thus far encoun
tered by t1 exceeds a tolerable limit (line 19). If so, the main task 
prepares to "throw in the towel," so to speak. It terminates task 
t1 (line 21) and proceeds with an alternative strategy after first 
reporting the trouble (at line 37). If the number of bad values does 
not exceed the limit (specified in line 19), task t1 is alerted to 
resume its work via the call to cause (at line 22). Since the call to 
wait at line 11 may occur several times, the parameter resume is 
reset to "not happened" after each return from wait at line lla. 
After causeing t1 to resume, the main task is now allowed to con
tinue with its own work at the point of interruption wherever that 
happened to be. 

There are a few loose ends that remain to be discussed concern
ing our example. The first item is a rather minor issue which, by 
considering it here, allows us to further illustrate the B6700 facili
ties for intertasking. The second item, however, refers to a serious 
flaw in the Figure 6.1 program. Though we point out this flaw 
here, we shall defer a full discussion of ways to correct it to the end 
of this chapter. 

1. The procedure terminate that is invoked on line 21 is not, 
as it would appear, a system intrinsic. Hence, in an actual B6700 
program, terminate must be explicitly coded either at the point of 
invocation (at line 21) or in the block head of the program as a 
macro definition. 

A possible macro definition for terminate might be: 

o define terminate(taskid) = 
1 begin 
2 reset(myself.exceptionevent); 
3 taskid.status ~ /I terminated" ; 
4 wait(myself.exceptionevent); 
5 end 
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Examination of the code allows us to make two useful observa
tions. An assignment of the code value, "terminated" to a task 
status attribute will receive immediate interpretation by the sys
tem. (That is, the interpretation of the new status value will not be 
deferred as when any other value, e.g., "suspended" is assigned to 
the status attribute.) For this reason, the effect of line 3 is to in
deed cause termination of the target task immediately, whether the 
task is running, ready, or waiting on an event. If a task A, that is 
attempting to cause termination of a task B, wishes to halt until 
it receives a positive acknowledgment from the system that B has 
in fact been terminated, then code such as given on lines 2 and 4 
are in order. 

To understand lines 2 and 4, it should be recalled from Chapter 4 
that the default value for an offspring task's exceptiontask attribute 
is the name of its parent. The causeing of myself.exceptionevent 
will occur only at the time the system has in fact changed taskid's 
state to "terminated," and not before. 

2. Suppose the main task has already reached and executed 
wait(evI) on line 34, while t1 is still executing. The main task 
would now be Q-threaded to evl. A subsequent attempt by tI to 
interrupt the main task cannot (unfortunately) succeed simply by 
causeing neg (or its dummy, holler) which has been attached to il. 
In the current software implementation, causeing holler merely in
structs the system to queue the interrupt, i.e., to force the main 
task to execute il only when next it is readied. But who will ready 
it? At first glance, it seems to be a simple matter to correct the pro
gram simply by inserting: 

cause(done) i 

in sumit4, say immediately following cause(holler) on line 11. While 
this will certainly achieve the immediate objective of readying the 
main task so that it is now able to resume by executing iI, other, 
perhaps more subtle problems will then arise that must also be 
considered. For this reason we shall defer discussion of this matter 
until Section 6.4 after having taken an initial look at the B6~700 
data structures for software interrupts. 
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6.3 DATA STRUCTURES FOR SOFTWARE INTERRUPTS 

In this discussion of software interrupts we shall provide the 
reader a glimpse into the B6700 implementation scheme itself so 
that, among other things, he can gain some appreciation of the 
processing costs that would be incurred in the use of these facili
ties. We mentioned earlier that an event is a structured variable 
whose storage structure is allocated in the activation record corre
sponding to the block in which the event is declared. Its structure 
may be viewed (in PLf1 style) as: 

1 event 
2 happened indicator(bit) 
2 wait head 

3 -first waiting task(stack no.) 
3 last -waiting _task(stack no.) 

2 interrupt head -
3 first task wishing to be interrupted(stack no.) 
3 lastjask ~,~ishingJo ,=-be ]nterrupted(stack no.) 

In effect, an event is a header for two doubly linked lists or queues 
of tasks, each designated by its stack number. (Stack numbers are 
discussed in Chapter 9.) Tasks may appear on both lists. The first 
list (call it the event wait queue) designates the tasks that want to 
be readied when the happened indicator of the event is turned on. 
The second list (call it the event interrupt queue) designates the 
tasks that want to be interrupted when the happened indicator is 
turned on. 

We need say no more here about the event wait queue. Each 
entry in the event interrupt queue appears in the activation record 
of the procedure declaring that interrupt. Thus, if the declaration 

interrupt x; (interrupt procedure) ; 

appears in a procedure named y, then in the activation record y' 
there is a compiler-generated, computer-allocated interrupt queue 
entry. In essence, this entry consists of a queue linkage word, a 
pointer to the interrupt procedure, and a bit to indicate if this 
interrupt is presently enabled. [Use of the interrupt queue linkage 
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word makes it possible to queue a task for interrupt while the same 
task may be queued (through its Q-thread) on a wait or ready 
queue.] When cause works its way through the entries of the event 
interrupt queue, it does the following for each enabled entry that 
is encountered. 

Let the interrupt queue entry we are speaking of be found lin the 
stack for task t. Then the pointer to the interrupt procedure code is 
threaded onto a special one-per-task "software interrupt queue" 
whose list header is found in task t's task information area (that 
area of each stack below the first activation record that is set aside 
by the system for its own use). If the task involved now happens 
to be executing on one of the system's processors, cause sees to it 
that a special hardware interrupt is generated. This forces thE! pro
cessor to execute an interrupt handling routine that will execute the 
procedure whose pointer was just threaded on task t's software in
terrupt queue. Upon completion of this interrupt procedure, control 
will return to the point of interruption (which may well be inside 
another interrupt procedure). 

If task t is not running on an actual processor at the time cause 
adds the interrupt procedure pointer to task t's software interrupt 
queue, then no further action with respect to task t is taken. * In
stead, cause "moves on" to do the same chore for the next .entry 
on the event interrupt queue. Task t will get its turn to run on a. pro
cessor if and only if the event for which it is wait-queued is caused. 
When this happens, the very first code executed by task t will be 
to see if its software interrupt queue is empty. If it is not empty, 
then, assuming the interrupt procedures execute returns, each inter
rupt procedure whose pointer is found in the queue is then exe
cuted. When all such procedures have been executed, control is 
returned to the point where the task would ordinarily have resumed 
had no interrupts accumulated during the period of suspension. 

Figures 6.2 and 6.3 show two self-explained execution snapshots 
of the Figure 6.1 algorithm. These snapshots illustrate the various 
queue threadings that we have just described. 

* This is because it is not permissible to force task t into the ready list and 
give it a processor so that the interrupt procedure can be executed. Such a 
practice, if permitted, would lead to other complications, as discussed in 
Section 6.4. 
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Figure 6.2 Snapshot of the Figure 6.1 algorithm when task fl starts execu
tion and the main task is executing (asynchronously) at line 29. The line 
marked CD shows the main task's pointer to task fl's task attributes. The lines 
marked ® sHow the ready queue. The line marked ® shows how interrupt il 
is queued (in the event interrupt sense) to neg. The part of il marked "proc 
ptr" points to the code block il. The lines marked @ remind us that formal 
event parameters, done, holler, and resume are called by reference. Events evl, 
neg and flresume are not happened (N). Interrupt il is enabled (E). 
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main task is now pictured as just about to execute line 22. The line marked CD suggests the 
software interrupt queue (SIQ) threading. (However, this SIQ thread is actually cu:t just prior 
to executing the procedure iI.) Line ® is the ready thread. Line ® shows t1 event-wait queued 
to tlresume. Lines @ are static links. 
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Procedure pointers for disabled interrupts are carried in the soft
ware interrupt queue along with those for enabled interrupts but 
are not acted on by the interrupt handler. However, if, after a dis
abled interrupt has been caused, the interrupt is re-enabled, then a 
proper adjustment is made to the corresponding entry in the soft
ware interrupt queue. In essence, therefore, a software interrupt 
ifsignal" that arrives when an interrupt has been disabled is remem
bered and acted on when the interrupt has been re-enabled. 

6.4 INTERRUPTING A SLEEPING TASK AND OTHER PROBLEMS 

We are now ready to resume our discussion of the flaw in the 
program displayed in Figure 6.1. That program failed to make pro
vision for awakening the "'sleeping" main task, so it could execute 
the interrupt procedure il and then, in this case, make it go back to 
sleep again (at the old wait point). In general, if we manage to 
awaken a task so that it can respond to an interrupt, what or how 
can we prevent it from forgetting that it had been asleep and that 
it should now go back to sleep for the same old reason? Techni
cally, this difficulty arises because an interrupt procedure is designed 
to effect a normal return to the instruction that would be executed 
next had the interrupt not occurred. Unfortunately, for the case of 
a sleeping task that had been interrupted, this next instruction is 
not a repeat of the call on wait but rather the return point from the 
call on wait. Thus, if we manage to awaken the task that should be 
interrupted, by synthetically causeing the waited-for event, then 
upon return from the interrupt procedure, control will skip right 
past the wait point and continue on as if the waited-for event had 
really happened. Such a practice is guaranteed to cause a catastro
phe in most instances unless some suitable coding is provided as a 
ifpreventative." 

The most straightforward approach toward solving the problem 
just described takes advantage of the so-called if complex wait" 
function, a B6700 variant of the wait intrinsic. The complex wait 
has as arguments, a list of event identifiers rather than a single one. 
The function returns an integer whose value represents the position 
in the ifwait list" of the argument that has been caused. 
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The use of the complex wait is now illustrated. Suppose line 34 
of Figure 6.1 were replaced by: 

while wait(evl, neg) = 2 do; 

The wait function performs all those actions described above for 
the wait intrinsic. Additionally, it returns a value; in the example, 
the value is: 

1 if evl has happened 
2 if neg but not evl has happened 

If evl is the first of the two events to be caused, the interpreta
tion is that the offspring task has successfully completed its work. 
Since the complex wait function will then return a value of 1, the 
while clause will be evalua.ted as false, and execution continues to 
lines 35, etc. However, if neg is the first event to be caused, the 
main task will be readied and then "trapped" to the interrupt rou
tine il. This is because the main task is now not only threaded on 
to the event interrupt queue, but also on to the event wait queue 
for neg. Upon normal return from iI, a wait function value of 2 
will be returned (at line 34), resulting in a true value for the while 
clause. Since the statement to be executed by the do is null, the net 
effect is that evaluation of the while clause is repeated. Hence the 
main task cannot proceed to line 35 until evl has been caused; 
during its hold at line 34, however, it can be interrupted by any 
number of interrupts such as iI, and all such interrupts will be han
dled correctly. 

It is now easy to see why il must be modified so that it remains 
responsive to repeated interrupt attempts. This may be accom
plished by rewriting line 16 as: 

interrupt il; begin reset(neg); 

To summarize, an appeal to the complex wait allows us to clear 
up the difficulty of interrupting a sleeping task in a fairly nice way. 
The author has found alternative solutions to this problem that do 
not require the use of a complex wait intrinsic, but these solutions 
were rather awkward at best. 
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It is reassuring to know, when invoking the complex wait intrin
sic in more general applications, that this function has been imple
mented with interlocks which guarantee that one and only one 
event argument on the wait list can effectively cause the awakening 
of a task. This prevents confusion in identifying which of several 
waited-for events is to "get credit for" awakening the sleeping task. 
Of course in the particular case we chose to illustrate, there can 
be no confusion, since the origin of events evl and neg are mutually 
exclusive. 

6.5 RESOURCE-ORIENTED SYNCHRONIZING PRIMITIVES 

Readers who have found the foregoing study of interest will 
want to investigate some of the other task synchronizing intrinsics 
that are offered in the B6700 software (which are detailed in the 
reference literature). Not the least among these is the pair of 
"resource-oriented" functions, procure and liberate. These allow a 
task to enter and exit from what Dijkstra calls a "critical section" 
of a program. These intrinsics, and several variants of them, func
tion as locking and unlocking primitives by taking advantage of a 
second property of an event which so far has gone unmentioned. 
Previously we regarded the event as being in essence a bistable, 
either happened or not happened. In the actual B6700 implementa
tion, each event has a second property bit which has the resource
oriented, two-state interpretation available and not available. A task 
that executes a statement of the form 

procure(ev) ; 

is forced into the wait state if the event ev is not available, but 
otherwise is allowed to execute the next statement in sequence. 
Thus a critical section coded in Burroughs Algol takes the form: 

procure( ev) ; 

liberate( ev); 
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6.6 SOFTWARE INTERRUPT CA VEA TS 

Although a good deal of emphasis has been given to the concept 
and implementation of the software interrupt, two caveats are in 
order. 

1. It should be clear that the implementation mechanisms for 
software interrupt involve more overhead than the simpler 
event queuing (wait and cause) forms of task synchroni.zing. 
Effective use of the complex wait function, as we gain more 
experience with it, may make it possible to achieve effects 
similar to those obtainable with the software interrupt, with 
less execution overhead in many cases. The tradeoff, where 
a choice is available, appears to be clarity of the program's 
semantics (on the side of the software interrupts) versus 
efficiency (on the side of the usimpler" event queuing mech
anisms). 

2. Other pitfalls associated with the use of software interrupts 
quite apart from the one just discussed have been observed 
by implementers of this type of software. For example, the 
interrupted procedure or its dynamic antecedent may have 
been a system intrinsic which has just locked a key data 
base. The interrupt procedure may prevent return to the in
terrupted procedure (or to its antecedent) so as to unlock 
that data base or otherwise restore certain key system data 
to a U consistent" state. Unsolved problems remain in this 
area and a full discussion of this topic is beyond the scope 
of this book. 



CHAPTER 7 

On Storage Control Strategies 

7.1 STORAGE CONTROL AT BLOCK EXIT 

As mentioned in Chapter 5, deallocation is close-coupled with 
program- or procedure-block exit in the current B6700 implementa
tion. This implies a discipline for recovery of all no-longer-needed 
storage resources and explicit adjustment to prevent 1/ dangling 
pointers." A dangling pointer is any reference to an information 
object (i.e., an array, an I/O buffer area, an activation record, etc.) 
that has been deleted from the address space of the computation. 
This type of resource management is done at block exit time and is 
the responsibility of system routines, calls to which are generated 
by the compilers at block exit and procedure return points in the 
algorithm. 

The routine blockexit, calls to which are generated when needed, 
checks among other things for the presence of arrays that have 
been allocated outside the stack (e.g., the num array in the Figure 
3.8 program) during the current instance of execution (activation) 
of the block being exited (e.g., A), and returns all such array space 
either to the proper free storage pool or to disk file storage. 

If an activation record that is being deallocated contains one (or 
more) interrupt queue entries, then one (or more) such interrupt 
queue chains would be severed leaving dangling pointers, possibly 
in this stack (when deallocating a software interrupt queue entry), 
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or in other stacks (when de allocating an event interrupt queue 
entry). The blockexit system routine does the needed repair work 
to all the affected queue links that are connected to those in the 
block being deallocated, and this action prevents the introduction 
of dangling pointers. 

The design philosophy employed in implementing these resource 
management functions has the desirable characteristic that a user's 
program will evoke (i.e., "pay for") only those services which his 
own program actually requires. The remainder of this section ex
plains why. One may note that what is said here concerning block
structured Algol program also applies to programs written in Basic, 
Fortran, etc., which can be regarded as degenerate cases of Algol 
programs. 

As a block is compiled, the compiler maintains information re
garding the characteristics of the local addressing space. If only 
stack space is to be used, Le., the "locals" are all simple variables, 
then the code generated for the end statement is simply Exit (a 
single B6700 instruction). If arrays, files, interrupts, etc., are de
clared in the block, then a call to the routine blockexit must be 
generated for the end statement. In the latter event, the compiler 
generates an auxiliary variable which, during execution of the 
entry to the block being compiled, is placed in the activation record 
on top of the cells for the declared locals. This auxiliary variable 
is a special "Software Control Word," the bit pattern of which is 
interpreted by blockexit. Thus, one particular bit means local arrays 
exist, another means that file close action may be required due to 
local files, etc. We see that blockexit is called only if necessary 
and, when called, is "toldN precisely what functions it must per
form, so essentially no superfluous activity is ever undertaken .. 

7.2 PREVENTING DANGLING POINTERS 

It is worth observing that as the richness of our programming 
language increases, and as programmers learn to exploit such rich
ness, the potential (occasions) for dangling pointers will inevitably 
increase. Moreover, short of developing compensating hardware 
improvements or going to alternative software implement.ation 
schemes, it can be appreciated that the overhead costs associated 
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begin ref int Pi 
begin int i: = 1; 

p: = i 
end 
print(p) 

end 

¢ p is declared to be a pointer to an integer ¢ 
¢ i is declared and initialized to 1 ¢ 
¢ p is made to point to i ¢ 
¢ block in which i is declared is exited ¢ 
¢ depending on the deallocation strategy, this printing ¢ 
¢ of value pointed to by p will not or will work ¢ 

Figure 7.1 An Algol 68 program [5] to illustrate the dangling pointer 
problem. 

with preventing the dangling pointer are bound to increase. Lan
guages like Euler, Algol 68}' and PLf1 may be cited to illustrate this 
concern. Such languages allow the use of procedure and label varia
bles (in addition to procedure and label constants). In PLf1 we also 
see permitted not only the use of variables of type pointer, but also 
the use of allocate and free statements, thereby introducing an in
creased hazard of dangling pointers [58]. 

Assigning a value to a procedure or label variable amounts to 
assigning (ip, ep) pairs to such variables. Let X be the variable to 
which such a value is assigned. If the "lifetime" of X exceeds that 
of the data object(s) Y referenced by the ep of the (ip, ep) pair, 
then the potential for a da.ngling pointer arises when Y is deallo
cated (before X). 

For programs written in block-structured languages, the concept 
of lifetime can, at some risk of oversimplification, be informally 
defined as follows: The variable X would have a lifetime exceeding 
that of Y if the activation record containing the cell for Y were de
allocated via block exit before deallocation of the record containing 
the cell for X. 

Figure 7.1 is an example of a simple Algol 68 program used by 
Berry [5] to highlight the dangling pointer problem. Comments 
contained in the illustration help to make the program self
explanatory to those unfamiliar with Algol 68. The last remark 
in the comments will be explained momentarily. 

Several recent studies [5,37,58] have reviewed approaches to 
preventing dangling pointers. Two ways to achieve this objective 
are: 
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1. Place constraints on the semantics of the programming lan
guage so that 

(a) the compiler intervenes to reject any assignment state
ment whose effect would be to assign a reference to an 
object that has a lifetime shorter than the cell to which 
the assignment is to be made; or 

(b) the run-time (interpreter) routines somehow invalildlate 
such assignment steps when attempt is made to execute 
them. 

2. Decouple the deallocation of activation records (and of other 
associated information objects) from the block exit activity 
of a computation. Retain such information as long as there 
exist (in the rest of the record of execution) pointers to such 
information. An information object then becomes a ca.ndi
date for deallocation (Le., for recovery in the resource man
agement sense) only when there are no longer any poi.nter 
variables whose values point to the candidate. 

Several investigations have reviewed the arguments to support 
the second approach [5,6,37,58]. The reader's attention is called 
to this literature for a deeper study. Implementation of scheme 1 
employs a deletion discipline that is facilitated with the uSle of 
stacks as described in this monograph. For implementation of 
scheme 2, however, which uses a retention discipline, stacks as we 
now know them are not likely to prove useful enough. We can 
speculate that some hardware improvements that would make for 
efficient link-listing of activation records [52] might help, though 
perhaps not enough. Rather different hardware approaches [37] 
may prove necessary. We can look forward to some interesting 
developments in hardware organization over the next decade, some 
of which may be aimed at solving the dangling pointers problem 
via a retention discipline. 

Returning to the consideration of the Figure 7.1 program, we 
can now note that if the deletion discipline (or strategy) is followed, 
the cell for i must of course be deallocated at exit from the inner 
block. The responsibility may be left to the blockexit routine to find 
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any and all pointers to objects in the deallocated record. In this 
case, the pointer p would be found and its value invalidated. As a 
consequence the statement on line 5, 

print{p) 

will fail, e.g., will cause an error return. We might picture this 
approach as a direct extension of the current B6700 implementa
tion philosophy. 

If on the other hand, retention is assumed, the activation record 
containing the cell for i is retained at the time of exit from the inner 
block because one cell in it is still accessible from p. As a result 
the pointer p remains valid and the print(p) statement will be suc
cessfully executed. Thus, this example suggests that though both 
storage management strategies are implementable, they cannot be 
expected to yield identical results in all instances. 





CHAPTER 8 

The B6700: Pros and Cons 

8.1 INTRODUCTION 

In much of the preceding text the author has described the 
B6700 organization structure and its "matching" software from the 
point of view of an enthusiastic admirer of its design and of the 
philosophy that underlies it. To gain some extra perspective, this 
chapter attempts to review and comment on several oft-mentioned 
alleged weaknesses of the present system. Other limitations and the 
possible system modifications that can remove such limitations are 
also discussed. 

Systems are often criticized or appraised from three viewpoints: 
That of the languages available to users and the cost effectiveness 
of user programs; that of the operating system and what it lets the 
user do (or not do); and that of the hardware. It is not always easy 
to separate these interrelated system capabilities in a discussion on 
the limitations of the B6700. The remainder of this chapter is never
theless structured with these three major viewpoints in mind. 

8.2 USER LANGUAGES AND USER PROGRAM PERFORMANCE 

The difficulty in attempting to separate language, from operating 
system and hardware is especially evident when trying to analyze 
why it is widely conceded that B6700 programs written in Fortran 
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do not as a rule execute as fast as comparable Fortran programs 
execute on less structured computer systems [e.g., on von Neu
mann machines that use index registers and/or base registers (but 
not stack-based descriptors) for data accessing] of compar,able 
arithmetic and memory speeds. There exists, of course, the com
panion observation that is also worth examining at the same time; 
namely, many B6700 algorithms for numerical computations f~xe
cute more efficiently (in time and space) when coded as Algol-like 
programs than when coded as Fortran programs. (The latter phe
nomenon may not surprise us since the B6700-type system was 
designed with the specific intention of facilitating the execution of 
Algol-like programs.) Be that as it may, since most computer instal
lations must run some Fortran programs, and some computer in
stallations run mostly Fortran programs, it is important to under
stand the underlying language and interrelated operating system 
and hardware considerations that together may explain these per
formance differences. 

The highly structured B6700 differs from typical machines in 
both instruction fetch and data accessing costs. On the plus side, 
fewer memory cycles are typically required for fetchingB6700 
instructions, and on the minus side, more memory cycles are re
quired for accessing data. Barton [2] has pointed out that, given an 
Algol-like execution environment, these plus and minus factors 
roughly cancel one another and what is left is the residual ad
vantage for the B6700 type machine, namely, that the code body 
for the B6700 algorithm is significantly smaller (occupies less mem
ory), and that all data accessing carries with it as a bonus, (a) the 
benefit of having to allocate primary memory space only for those 
substructures of data aggregates that are actually needed and (b) 
the assurance of full protection against bounds errors and other 
access violations (deliberate or accidental). 

The explanation is as follows: Variable-length B6700 instructions 
frequently have no address fields at all since the operand location.(s) 
is (are) implied to be in some specific spot(s) at or near the top of 
the stack. This means that B6700 instructions are on the average 
shorter than their counterparts in von Neumann-type machines. 
The shorter B6700 instructions, called "syllables," are packed sev
eral per word, hence each memory cycle taken for an instruction 
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fetch usually retrieves more instructions than an instruction fetch 
on a competitive conventional machine. 

On the other hand, data accessing for items outside the stack 
requires that at least one descriptor be brought to the top of the 
stack and employed as an indirect (base) address. Thus at least one 
extra memory cycle is often unavoidable for fetching array elements. 
There are no fast registers whose use is dedicated for holding de
scriptors as in most large conventional machines. When a data 
structure element has several defining indices, a descriptor must 
be fetched for each index, unless the multidimensional array has 
been "linearized." This means, for example, that as the frequency 
and degree of array indexing increases, the execution cost balance 
mentioned earlier tips to the negative side. That is, programs tend 
to become more costly to execute on the present B6700 than on sys
tems that employ dedicated base address and/or index registers. 
It is for this reason that the B6700 designers have often argued 
against recommending their highly structured machine for installa
tions in which the dominant application is claimed to consist of 
numerical computation on arrays (e.g., large matrix inversions). 

On the other hand, the use of "dope-vectors" of descriptors for 
the structuring of data aggregates offers an important tradeoff to 
offset the extra accessing cost just mentioned. Not only is it unnec
cessary to commit memory space for substructures, e.g., rows of 
an array, until actually needed, but each such substructure is indi
vidually overlayable. This may result in savings in space which of 
course means savings in time. One must also bear in mind impor
tant tradeoffs that obtain in this case between execution speeds and 
protection. A highly structured machine like the B6700 requires 
data accessing through system-constructed descriptors. This "con
straint" offers built-in protection benefits by preventing a large 
class of run-time accessing errors and illegal access attempts. Users 
are protected both from others and from themselves. The signifi
cance of the protection issue cannot be minimized [19,28,40,46], 
although we have arbitrarily excluded a full discussion of the issue 
in this text. Appeal to the tradeoff issue of protection is not to say 
however that the B6700 hardware structure cannot or will not 
evolve toward speedier data accessing. The technical feasibility of 
this advancement is discussed further in Section 8.4. 
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We are now ready to see why ASA Standard Fortran proglrams 
may execute slower than corresponding Algol-like programs on the 
B6700. The semantics of the Fortran EQUIVALENCE and COM
MON declarations are such that use of these declarations effecti.vely 
forces a compiler to allocate contiguous blocks of storage for arrays 
that fall under the purview of these declarations. * Algol-like lan
guages do not allow such declarations; hence all structured v,aria
bles (e.g., arrays) in such languages are memorywise independent. 
Moreover, components of structures, e.g., rows of arrays, can. be 
allocated to separate and relocatable memory areas (eachpointE~d to 
by an appropriate descriptor). 

There are two costs associated with this Fortran constraint: 

1. Finding a contiguous block of memory that is large enough to 
serve. (This is a memory management problem.) The ,allo
cation cost perhaps depends as much on the allocation strate
gies that are chosen as on the hardware organization of the 
system. This cost, which increases with the size of the block 
needed, could well be comparable on machines of widely 
different organization structure. 

2. Achieving data access to individual array elements. This cost 
depends on the degree of indexing required and/or on the 
organization of the hardware. On machines that employ in
dexing hardware, the compiled code need not suffer in effi
ciency, but for a B6700-type structure, part of the address 
must be computed arithmetically at run time from the base 
address given by the descriptor for the entire region. Thus, 
the effective index for Ai,j involves a run-time evaluation. of 
the expression: (j - 1) X imax + i-I. The greater degree 
of indexing, the greater will be the number of instructions 
required to compute the desired offset into the memory 
block. This computational overhead is in addition to that 
incurred by the descriptor mechanism. Worse yet, none of 
the tradeoff advantages associated with the descriptor accrue 
in this instance . 

.. Perhaps another way of stating this is that Fortran was designed for a 
fixed-address machine (the IBM 704). 
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We see therefore that the second cost cited is the chief source 
of the penalty for executing B6700 programs written in ASA For
tran. Observation: If one were content to write Fortran programs 
which were "equivalence free," so to speak, then it would be an 
easy matter to adjust the compiler to allocate array space in inde
pendent blocks, one per each structured variable or structured com
ponent thereof. Doing this would put Fortran programs that make 
heavy use of arrays on par with comparable Algol programs when 
executed on a system like the B6700. Insisting on equivalence-free 
Fortran programs is a matter of style in the same sense as Dijkstra's 
now widely accepted insistence on avoiding the go to statement in 
Algol programs by a judicious substitution of conditionals, proce
dure calls, and for statements. In any case one could well ask, 
"What price, Fortran?" 

Other language and operating system considerations are often 
discussed in connection with the B6700-type system. For instance, 
one may wonder why it is that relatively so few language proces
sors were in use by "customers" of the BS700 series-although this 
system was widely used for many years. (It is too early to make a 
comparable observation for the B6700.) Is there something about 
the structure of the machine or of the operating system that made 
compilers for the BS700 hard to implement? Several explanations 
can be offered to suggest that this was not the case, and indeed, 
that quite the opposite is more likely to be true. 

1. The manufacturer chose to commit only a seemingly skeletal 
force for the software support effort. This proved feasible 
because of the strong coupling of two important factors: 
(a) the system's architecture which caters for execution of 
Algol-like programs and (b) the decision to write all soft
ware in Algol-like languages. 

2. Customers were typically content to use the equipment with 
the supplied language processors. They were rarely moti
vated to appreciate the unusual structure and design philoso
phy of the supporting hardware and operating system. (It 
must be said that the BS700 series had many commercial 
and few academic customers.) We, of course, bear in mind 
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that a compiler for any advanced system must produce code 
that fits into the system's special operating environment, 
e.g., multiprogramming, multiprocessing, protected address
ing, etc., and that insures correct communication with the 
system-supplied intrinsics. A customer· who failed to "do 
his homework" would therefore not be likely to produce his 
own specially-tailored language processor. 

3. Customers soon learned that the Algol-like compilers offered 
by the manufacturer amounted to a language hierarchy that 
permitted a programmer to express rather easily a wide range 
of information processing operations from the most machine
independent levels to the most detailed machine-dependlent 
descriptions. Exemplified in B6700 terms, this hierarchy of 
high-level language processors [41] now includes three p:rin
cipal components: namely, Extended Algol, DC Algol [9] (an 
outgrowth of a special data communications language), and 
Espol [11]. Programs can be constructed by binding segments 
that are separately compiled by each of these processors. 
Availability of Espol to the user eliminates his need for an 
assembly language processor. Availability of the rich Algol 
tends to reduce and often eliminate the user's need for spe
cial purpose higher level languages, e.g., for string or list 
processing. Availability of DC Algol encourages a subsystem 
designer to develop his own suboperating system. Moreover, 
macroprocessors written in Algol may be easily constructed 
to produce translators from given special purpose languages 
to one of the languages in the above" triplet." 

4. Intrinsics and easily modifiable compilers allow one to tailor 
a compiler to one's needs without going to a new language. 

5. Users of the B6700 system may bind Cobol, Fortran, Algol, 
and DC Algol code segments into single programs. 

The first of our foregoing "explanations" suggests an important 
observation; namely, a system that has been designed to facilitate 
development of its software in high-level languages and whose sup-
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porting software is made easier to understand because it too has 
been coded in high-level language is one for which new software 
is easier to produce than for systems in which coding in low-level 
languages is encouraged. Ten years ago [1961] this Burroughs ap
proach was unique. More recently, at least one other major system 
(Multics [46]) has been implemented with this philosophy. The 
idea has gained an increasing number of adherents, but so far no 
other manufacturer has marketed such a system on a commercial 
basis. 

8.3 THE OPERATING SYSTEM 

One has to go out of one's way to find many serious shortcom
ings in the B6700 operating system. Two that are frequently dis
cussed among designers and builders of the system's software will 
be mentioned in the following subsections. 

8.3.1 Richer Set of Synchronizing and Software Interrupt Primitives 

Multitasking as a user facility is still quite new. Formalizing of 
primitives for use in communication among cooperating sequential 
tasks [26,27] is only now coming of age. Even though the B6700 
operating system is one of the first to fully cater to this approach 
to programming, one suspects that much still has to be learned 
about the subject. The discussion of the program in Figure 6.4 (how 
to interrupt a sleeping task and what system software/hardware is 
needed) was a case in point. Should one provide for passing param
eters to interrupt procedures? What other primitives besides wait 
and cause should be provided as alternatives (e.g., semaphores P 
and V [27], critical regions [29] and conditional critical regions 
[33], facilities for wakeup with a message included [56], etc.)? 

8.3.2. Recursively Defined Resource Allocation 

Although a primary goal of the B6700 hardware and software is 
to cater to recursion in programming at all levels, it can be argued 
that the development can still go further, perhaps with further 
benefits. Is the operating system itself recursively defined? That 
is, can a sequence of operating systems be developed by users that 
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function under the system's own master control program? In par
ticular, is space (and other resource) allocation recursively defined 
for potential exploitation by users? The answer is no, not in any 
fully general sense. Readers may wish to study this question fur
ther [30]. 

8.4 HARDWARE LIMITATIONS AND FUTURE IMPROVEMENTS 

In comparing the B6700-type of system with conventional sys
tems that are thought to be of "advanced" design, some readers 
may wonder what, if any, disadvantages have been introduced by 
the B5700/B6700 design choice to favor hardware segmentation 
while rejecting hardware paging mechanisms that do not reflect the 
information structure of the program. The pros and cons of this 
issue have unfortunately not been widely understood, although 
the excellent discussion by Randell and Kuehner [49] on dynamic 
storage allocation systems should go a long way toward explaining 
the tradeoffs that are involved. In essence, a design that favors 
allocation of variable-sized segments saves storage space at the 
expense of added processing time to locate space of suitable size 
while a design that favors allocation of memory in fixed-sized page 
blocks saves processing time (to find a unit of storage allocation) 
at the expense of wasted space, Le., l'Iinternal fragmentation," which 
arises whenever the space required does not exactly utilize an in
tegral number of page blocks. The time overheads associated with 
searching for the right segment size and returning the portion left 
over to the free list (and maintaining the lists) can be minimized 
with suitable hardware, and some of this (although perhaps lllOt 
enough) has already been accomplished in the B6700 system. There 
is not very much that can be done in hardware to offset the space 
wastage of the paging approach, although some attempts have been 
made to produce machines that permit page blocks to be variable 
in size [43]. 

In Section 8.3.2, we discussed among other things the desirabil
ity of a hierarchy of operating systems (MCP's).* Allied with this is 

* Burroughs has referred, for years, to its operating systems as Master Con
trol Programs, or MCP's. 



8.4 HARDWARE LIMITATIONS AND FUTURE IMPROVEMENTS 91 

the concept of a hierarchy of storage control. Thus a task could 
hand control to another task and at the same time hand over a 
block of storage to that descendent task. This is precisely the case 
with the current Mep and "everything else," but there are only two 
levels of storage control and the desire is for multilevels-in fact, 
as many levels of storage control as there are levels in the task tree. 
It is difficult to overemphasize the advantages of such an approach. 

In Section 8.3.2 we also pointed out that such a storage control 
strategy has not been achieved on the B6700. It could, however, 
not even be considered if a paging rather than a segmentation 
mechanism had been implemented. (The reader is urged to convince 
himself of this.) With the segmentation approach, there is still 
potential for development in such a direction, and it could well be 
that such development would constitute the major advantage of 
the segmentation approach. 

In Section 8.2 we noted that the current hardware often puts 
the B6700 at some disadvantage for executing programs that in
volve a great deal of indexing. Barton [3] has asserted that an ade
quately large "fast stack top," i.e., a sufficient number of words, 
say 32, at the top of the stack that are composed of fast registers, 
provides the solution to the above problem. * By increasing the 
stack top and without altering the instruction repertoire, the key 
descriptors can be brought to the stack top by the normal proce
dure call and kept there during the course of the program loops 
in which fast access to them is required. Other schemes which have 
the same net effect may be developed. Barton has also suggested 
that the enlarged fast-stack-top approach lias the further virtue of 
offering a convenient opportunity to introduce hardware-supported 
vector operations, and in this way accomplish accessing functions 
which, in other systems, would be done with index registers. Hard
ware implementation of vector operations on a stack machine would 
certainly remove the residual competitive disadvantages machines 
like the B6700 now "suffer" in the area of array processing. 

Three other areas where improvements in the hardware could 
well lead to overall system improvement are: 

* Top of the stack registers, as currently implemented on the B6700, are dis
cussed, but only briefly, in Chapter 9. See for instance, Figure 9.6. 
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1. Enriching (extending) the self-describing tags * for data and 
control words so that more hardware recognition can. be 
effected. For instance, events are control words that are not 
now recognizable as such by the hardware. 

2. Adding operators to perform processing on queue data 
structures. Since so much multitasking control depends; on 
operations on queues, it would appear that special operators 
could be devised to facilitate operations on these rather stan
dard data structures. 

3. Altering the interrupt hardware so that the operating system 
can increase its control over which processor may recognize 
interrupts by source and by type. 

All of these observations of possible hardware improvement, and 
several more, are recognized by the system's designers and imple
·menters. Readers of this monograph who become interested in the 
issues mentioned will find study in this area to be stimulating and 
rewarding. 

In summary, the language, software, and hardware limitations 
that were just discussed seem mainly to point to potential improve
ments in the system that can minimize or remove these limitations. 
There appear to be no blunders, although when the initial Bsooo 
system was first introduced it was so little understood that many 
were convinced otherwise. It is hoped that the approach taken in 
this book has provided a useful basis for appreciating these remark
able systems, which in many respects have been ahead of their time. 

* Tag details on the B6700 are described in Chapter 9. See Figure 9.2. 



CHAPTER 9 

S(JJJ1£ Hardware Details of Procedure 
Entry and Return and Tasking 

by J. G. CLEARY* 

9.1 OVERVIEW 

Much of the power of the B6700 hardware and software lies in 
the uniform treatment that has been given to procedure calls, inter
rupts and task calls. In Chapters 2-7 we tried to keep the discourse 
at a somewhat stylistic level, avoiding many of the actual details, 
hoping thereby to more easily focus on the structure of computa
tions and on the objectives of the hardware and software operations 
for matching and facilitating such structures. In this chapter we 
shall describe the B6700 hardware in greater detail than was given 
earlier for the benefit of the reader who has gained a sufficiently 
healthy curiosity. Still, the new description must be regarded as 
somewhat of an abstraction of the real hardware's structure and 
function. This is unavoidable if the details provided are to remain 
above the level of frequent change. It is to be hoped that readers 
will find that this intermediate level of description can serve as a 
suitable bridge to the details that are normally found in the refer
ence manuals. 

Figure 9.1 shows a view of the B6700 system while two jobs 
(A and B) are currently in operation. [Figures in this chapter show 

* The Burroughs Corporation, England. 
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Figure 9.1 B6700 System Data Structure with two re-entrant jobs in opera
tion. Job B is currently active [running on the (single) processing unit]. 

the stacks as filling from bottom to top. With this style, the terms 
"top of stack;! or "bottom of stack" indeed refer on the diagram of 
a stack to top and bottom; respectively. Readers can expect to :see 
this style used in other literature on the B6700 [8,13,16,32; Ap
pendix to 47, 48]. (The style used in Chapters 2-7, the reverse of 
the one used here, is actually rather unconventional.)1 In the fig
ures which follow only the EP (Display Registers) of the hardw,are 
processor is shown. Registers holding the instruction pointer ,are 
omitted. 

Figure 9.1 reminds us that in a single-processor system a switch 
of control from one job, B, to another job, A, will require resetti.ng 



9.3 INFORMATION AND ADDRESSING STRUCTURE 95 

of Display Registers [32,,50] D2, D3, and D4 and frequently, also 
Dl (when separate segment dictionary stacks are used). 

The initiation of a new job or task will, in general, also require 
resetting of Display Registers. This mechanism will be described 
below, but it is worth pointing out that "Display Update" is associ
ated essentially with procedure entry and exit and that job or task 
initiation and termination are merely special cases of procedure 
entry and exit [16]. 

9.2 THE STACK VECTOR 

All references to stacks are through Stack Numbers. The Stack 
Number of a stack is the ordinal of a Descriptor (see Section 9.3), 
within the Stack Vector}, which contains the absolute address of 
the beginning of the memory space occupied by the stack. The 
Descriptor for the Stack Vector itself is contained within the Stack 
Trunk (see Figure 9.1) and is always at relative memory location 
Do + 2-Le., two spaces above the place where the zeroth Display 
Register points. Hence, instructions (called "operators" on the 
B6700) may reference stacks indirectly via Stack Numbers. Stacks 
are therefore dynamically relocatable. 

Since a Stack Number uniquely identifies a stack, it also uniquely 
identifies a job or task within a job. Though a job may be given one 
or more names, ultimately all such names map to the Stack Number 
for its representative stack. Since the Stack Vector and Stack Num
ber are known to the computer hardware, much of the housekeep
ing associated with job handling is taken care of directly by hard
ware. 

The Stack Vector may therefore be thought of as a "Job Vector." 
It is ultimately a list of cells which collectively point to the address 
space owned by each joh. Since all resources owned by a job are 
either contained within or are referenced within its associated stack 
or stacks, the ownership of all resources within the system is ascer
tainable from the Stack Vector. 

9.3 INFORMATION AND ADDRESSING STRUCTURE 

Figure 9.2 shows the possible formats of the 51-bit words. The 
3-bit tag field specifies the kind of information contained within 



DATA WORDS 

10001 I EXPONENT MANTISSA I Single-precision operand (SP) 

I I Double-precision operand-
1
010

1 I EXPONENT I MANTISSA 

I 
1st word (DP1) 

10101 EXPONENT I MANTISSA I Double-precision operand-

1-6 bits .1. 39 bits 
.1 2nd word (DP2) 

DESCRIPTOR WORDS 

11011plci I LENGTH I ADDRESS 1 Data descriptor (DD) 

.... 1 O_l-'ll'-p ..... � ___ ----'�_L_E_N_G_T_H __ ~I-A=D;....;;D;;;..R=E=S=S;.....-__ ---II Segment descriptor (SD) 
1---20 bits I I. 20 bits -I 

SPECIAL CONTROL WORDS 
10111 ISTACK NO. IDISPLACEMENT ILL! DF I Mark stack control word (MSCW) 

'ADDRESS] 
IOPERATOR INDEXILL! COUPLE Program control word (PCW) 

I ADDRESS] 
IOPERATOR INDEXILU COUPLE Return control word (RCW) 

I I ADDRESS 
L..I 0_0_11L.......L..1 ____ ---:-______ --:~1 COUPLE ] Indirect reference word (lRW) 

I I 

11111 ISTACK NO. 

10011 I STACK NO. IDISPLACEMENT I I DELTA I Stuffed indirect I I reference word (IRWS) 

fOllTT ,,~ :~T"~ 'T'I""TI---'----D-S---....:.....-..,..I D-F ----,1 Top-of-s~ack _ __ 

~[~ 1 i"\ 1 ~~ I I I .1 .1. J control word (TOSCW) 
10 bIts • .• 16 bits II Figure 9.2 B6700 word formats 
4 bits-l+. 20 bits 14 bits with tag mnemonics. 
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the word, and the other 48 bits contain the actual information. 
Operators (instructions) treat the words according to their tagged 
nature. Thus single precision and double precision information is 
so tagged and there is no need for special single and double preci
sion operators. For example, there is only one Add Operator which 
sums the two top operands in the stack and replaces them by the 
(one) result. The Add Operator will take any combination of double 
and single precision operands, integer or floating point, and will pro
duce the appropriate-single or double precision-result. All neces
sary precision transformations will be handled by the hardware. (No 
unique integer data type exists. An integer has a zero exponent.) 

Certain operators require certain word types as operands. Thus 
a fault interrupt will be generated if one of the operands for an 
Add Operator is a Control Word. Similarly, a fault interrupt will 
be generated if certain operators access other than Control Words. 

Descriptors point at arrays of information. The information may 
be data (Data Descriptors) or program code (Segment Descriptors). 
The address field contains the absolute address of the array either 
in core (P field = 1) or on the disk (P field = 0). By way of review, 
if an attempt is made to access information, via a Descriptor, having 
a Presence Bit (P field) of zero, a Presence Bit Interrupt is generated 
and a system procedure will cause the relevant information to be 
moved from disk to core with appropriate modification of the De
scriptor. Thus automatic lip aging on demand" is catered to. (Note 
however that variable length segments rather than pages are the 
units transferred.) Any attempt to index information outside the 
units specified by the length field of the Descriptor will cause an 
Invalid Index interrupt. Data Descriptors may point to arrays of 
Data Descriptors thus allowing for arrays of any dimension. [Note: 
The use of the "C" or "copy bit" field shown in the Data Descrip
tor format on Figure 9.2 is explained in Section 9.4 in a discussion 
of Figure 9.7.] 

Information may also be accessed via the (normal or stuffed) In
direct Reference Word. The Normal Indirect Reference Word 
(IRW) specifies (in its Address Couple field) a Display Register 
and a Displacement. Thus information global or local to the partic
ular active procedure may be accessed. For example, when Job B 
is active, IRW's having the address couples (0,3), (1,4), and (2, 5) 
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Figure 9.3 Simple Stack Tree showing addressing through Display Regis
ters. VI is at (0,3) ; V2 is at (1,4) ; V3 is at (2,5) ; V4 is at (2, 5) when job A is 
active. 

will access, respectively, in Figure 9.3: the system variable VI in 
the Stack Trunk, the job variable V2 in the Segment Dictionary, 
and the global variable V3 in Job B's stack. It should be noted 
that when Job A is active, Display Register settings will change 
and the address couple (2, 5) will then access variable V 4. 

The Stuffed Indirect Reference Word (IRWS) specifies three 
things: (a) a Stack Number and thus a particular stack, (b) the 
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start of the addressing space of a particular activation record within 
that stack, and (c) the displacement of the particular piece of in
formation within that addressing space. Figure 9.4 illustrates this 
situation. Stuffed Indirect Reference Words may be used for ad
dressing across stacks (Le., between tasks) and for handling param
eters, passed "by name" or "by reference," Le., where the actual 
parameters are not necessarily within the addressing environment 
of the procedure to which they are passed and can therefore not be 
accessed via a (Display Register, Displacement) address couple. 

9.4 STACK BUILD-UP AND PROCEDURE ENTRY 

Consider the Algol program shown in Figure 9.5. Figure 9.6 
shows the format of the job stack when line 3 of the program has 
been executed. Note the assignment of stack space for the real 
variables RI and TI (address couples 2, 2 and 2, 3) and for the De
scriptor for array Al (address couple 2, 4). Note how the Descrip
tor for this two-dimensional array points to a space (outside the 
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begin . . . . . . . . . . . . . . . . . .... lexical level 2 

end 

real Rl, Tl; 
array Al [0: 5, 0: 20]; 

procedure PI (X, T, Y) .... lexical level 3 
value X; 
real X, T; real array Y[*, *]; 

begin 

P2; 

end; 

procedure P 2; " . lexical level 4 

begin 
real R2, T2; 
real array A2[0: 4, 0: 15]; 

R2: = 5; T2: = R2 t T2; 
PI (R2, T2, A2); 

end; 

Pl(Rl, Tl, AI); 

Figure 9.5 Program for Figures 9.6-9.11. 

stack) containing one Descriptor for each row of the array. These 
latter Descriptors point to the actual space occupied by each row. 
(It should be remembered that this space can be in either primary 
or backup storage, i.e., in core or on the disk.) 

Figure 9.6 demonstrates how information is entered into or ex
tracted from the stacks. An Active Stack has the A, B, X, Y, and S 
registers and the stack limit (SL) and bottom of stack (BDS) regis
ters of some processor associated with it. The X and Y registers 
may be regarded as double precision extensions of the A and B 
registers and will not be considered further. (See Table 9.1 for a 
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r---------------, I Top-of-stack Registers I 

I A X I 
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I I 
I I 
I I 

I 
I I 
\..____________ __J 

Figure 9.6 Stack i is the stack for the job associated with the program 
shown in Figure 9.5 (line 3). See Table 9.1 for an explanation of the tag nota
tions used within words. 
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TABLE 9.1 

EXPLANATION OF THE TAG NOTATIONS USED TO IDENTIFY 

THE WORD TYPES IN FIGURES 9.6-9.15 

Tag 

DD 
DDC 

SP 
CW 

IRW 
IRWS 
SD 
PCW 
RCW 
MSCW 

TOSCW 

Explanation 

Data descriptor 
Copy descriptor 

(same as DD with copy bit on) 
Single precision 
Control word 
Indirect reference word 
Stuffed indirect reference word 
Segment descriptor 
Procedure control word 
Return control word 
Mark stack control word 
Top of stack control word 

list of tag notations used to identify word types in Figures 9.6-
9.15.) 

The stack operates as a last in, first out storage area. Thus an 
operand is stored into register A with consequent push-downs into 
register B and into the memory location pointed at by register S. 
Similarly, extraction of data is from register A with consequent 
pop-ups from B and the location referenced by S. The contents of 
S are incremented by one on a push-down and decremented on a 
pop-up. Should such an adjustment result in the S register's point
ing at the bottom or top of stack (i.e., at the place pointed at by 
either the BOS or SL register), an interrupt will occur and appro
priate action will be taken. 

Figure 9.7 illustrates the situation at line 19 in the program of 
Figure 9.5. Procedures PI and P2 have been entered, and procedure 
P2 is now operating at level 4. The next line will call (recursively) 
procedure PI whose declaration in the outer block is marked by a 
Program Control Word (discussed below) accessed by the address 
couple (2,5). Note how the three parameters for PI have been 
passed, the value parameter (at 3, 2) directly, the real name param
eter (at 3, 3) by means of an IRWS, and the array name parameter 
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Figure 9.7 Showing the stack for the program of Figure 9.5 (line 19). The 
cell designated "Y" is a copy descriptor associated with the global array II AI." 
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by means of a descriptor that is a copy of the principal or IImom" 
descriptor found in the activation record of the outer block. 

[Note the so-called II copy descriptor," whose mnemonic we have 
chosen as DDC, is distinguished by having its copy bit (field "C" 
in the descriptor format of Figure 9.2) on. In the B6700, copy de
scriptors point to their respective targets when the latter are in 
core, but point to their respective mom descriptors when the ta.rget 
is in auxiliary memory. Each time a target array is pushed out of 
core (or pulled into core) by the operating system, the affected copy 
descriptors, if any, as well as the mom descriptor are each properly 
altered to reflect the change in location of the target. 

There has been some discussion among some of those familiar 
with B6700 architecture as to whether the copy descriptor should 
not always-Le., irrespective of whether its target is in core or in 
auxiliary memory-point to its mom descriptor, and never directly 
to its target. The arguments on both sides should be apparent to 
the interested reader, and are in any case beyond the scope of this 
book. The copy descriptor is used extensively in circumstances 
other than those addressed in this section; the details, however, are 
unimportant to this discussion.] 

A Mark Stack Control Word marks the start of the addressing 
space for each entered procedure. Each MSCW has a dynamic chain 
link (in its DF field) to the MSCW preceding it, and a static link 
(in its displacement field) to the MSCW that defines the immedi
ately containing addressing environment. The DF chain of MSCW's 
thus forms the dynamic history of procedure entry. (It was referred 
to as the dc link in earlier chapters.) The LL field of the MSCW 
contains the lexical level of the procedure whose addressing space 
it marks. As each procedure is entered, appropriate Display Regis
ters are set by the hardware. These Display Registers point at 
MSCW's and indicate the procedures (or blocks) whose addressing 
spaces are global to the procedure (or block) currently being en
tered. Similarly, on exit from a procedure, Display Registers may 
be reset to indicate a new addressing environment. The addres!~ing 
space for the procedure whose code is currently being used by the 
process is pointed at both by a Display Register and by the F regis
ter (not shown previously). 

Consider again Figure 9.7. Compilation of line 20 of the program 
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Figure 9.8 Situation just prior to entry to a procedure, showing the situa
tion during execution of line 20 in the program of Figure 9.5. The cell desig
nated "Y'" is a copy descriptor associated with the array A2 declared locally 
in procedure P2. 
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Figure 9.9 Showing how the Code Segment is accessed. The Stack Number 
field of the PCW is not shown. 

of Figure 9.5 will generate the code necessary to call procedure Pl. 
First of all, a skeleton MSeW is inserted in the stack. The skeleton 
Msew (already) contains the OF field-namely, a copy of the con
tent of the F register. Then a Normal or Stuffed IRW, pointing to 
the Procedure Control Word (PCW) for procedure PI, is constructed 
and pushed down onto the stack. Any actual parameters are pushed 
onto the stack. This situation is shown in Figure 9.8 where the 
relationship between IRW, pew, Segment Descriptor and eo de 
Segment (demonstrated in more detail in Figure 9.9) should be 
observed. Note particularly that the Segment Descriptor appears 
only once (there are never any copies) in the Segment Dictionary 
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Stack of the job. The term "Segment Dictionary Stack" should 
now be self-explanatory. Segment Descriptors can appear only at 
level 0 (in the Stack Trunk-i.e., for Mep procedures) or at level 1 
(in the Segment Dictionary Stack). The stacks of two jobs that 
share a single Segment Dictionary will each contain a pew for a 
particular procedure, but both pevv's will point to the same Seg
ment Descriptor. If we add the condition that program code is 
"pure" -nonmodifiable-then the way in which re-entrancy is han
dled is clear [16]. 

At this point, the Enter operator will be encountered and the 
following (all achieved by Enter) win occur: 

1. The F register will point at the newly inserted MSeW. 

2. In order to create the addressing environment required by 
the procedure to be entered, i.e., in order to effect the correct 
"Display Update," it is necessary first to know the lexical 
level at which the procedure's pew appears. 

(a) When the pew is referenced by a Normal IRW, n is 
obtained directly from the address couple of that IRW. 
This is the case in the example wh~re, since the IRW 
has the address couple (2,5), n = 2. 

(b) When the pew is referenced by a Stuffed IRW, n is 
obtained from the LL field of the MseW pointed at by 
the "6" field of the IRWS (see Figure 9.4). Indeed, it 
is precisely with the objective of finding such an 
MSeW in mind that the IRWS structure is so contrived. 

It should be noted that a procedure declared at level n must run 
at level n + 1; hence Display Register Dn+l is set to point at the 
newly inserted MSeW (Le., Display Register On+l is set to the 
same value as the F register-see item 1 above). Also, the number 
n + 1 is inserted into the LL field of the MSeW. See Figure 9.10 
which illustrates the case when n = 2. 

When the pew is referenced by an IRWS (note that this situa
tion is not illustrated in the example), On is set to point at the 
MSCW from which n was determined. Such is not necessary when 
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Figure 9.10 The Stack for the recursive call on procedure Pl. Shows the 
situation just before start of execution of line 21 in the program of Figure 9.5. 
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the reference is via a normal IRW, since Dn is necessarily already 
set to the correct value for the new addressing environment. 

3. The Stack Number and Displacement fieldr;; of the newly in
serted MSCW are set to point to the MS~W pointed at by 
Dn (Le., D2 in the example). 

We thus have a static link between MSCW~ which expresses 
the lexical or contour structure of a program. In. Burroughs litera
ture this link is always referred to as the Displacement link. Static 
links may (as in Figure 9.8) parallell the dynamic links, but depart 
from the latter when recursive calls are encount~red, or when dis
joint procedures are called. See also Figure 3.5. The static link 
chains together a "nest" of procedures. 

4. If necessary, the static or Displacement link in the MSCW 
pointed at by Dn (D2 in the example) is examined and Dis
play Register Dn - 1 is reset. The Displacement link is chased 
with consequent resetting of registers Dn-2, Dn-3, ... , 

Dl (Do is never reset) until all required registers have been 
reset. (Note: The Stack Number field in. the Displacement 
link allows, if necessary, Display Registers to be reset across 
stacks-across families of tasks.) Such action is not required 
in the example since Dl is already pointing at the correct 
MSCW and all lower Display Registers must consequently 
be set correctly for the procedure entry. Actually, the rule 
for termination of Display Update is a little more compli
cated than this, but the details are unimportant. 

5. The newly inserted IRW or IRWS is changed to a "Return 
Control Word" (RCW). Note how the RCW (Figure 9.2) is 
very similar to the PCW and references the program code 
of the calling procedure, at one operator past the point of 
call, via a Segment Descriptor in much the same manner as 
illustrated in Figure 9.9. The LL field of the RCW contains 
the lexical level of the calling procedure. 

The procedure has now been entered and is active. (The situation 
is shown in Figure 9.10 which is a display that is conceptually simi
lar to Figure 3.2 but differs from it in degree of detail.) Its address-
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ing environment is properly recorded, according to the rules of 
Algol, in the Display Registers. It has access to T2 and A2, which 
are outside its normal addressing environment, via the Stuffed In
direct Reference Word at (3,4) and via the copy descriptor which 
correspond to name parameters. Note that the new procedure has 
quite a different addressing environment from its caller and that 
Display Register 4, i.e., D4, is no longer relevant. (The highest 
relevant Display Register for any processor is that which points to 
the same MSCW as the F register.) Figure 9.10 contains two sets 
of Displacement links-one active and associated with the called 
procedure and one passive and associated with the calling proce
dure. There may be many such sets within any stack. 

On exit from a procedure, the DF link enables the MSCW associ
ated with the calling procedure to be accessed. The LL field in the 
RCW (the Display level of the calling procedure) allows F and the 
topmost Display Register to be set. The Displacement linkages in 
the MSCW's, starting at that accessed by the new value of the F 
register, allow the Display Update to be effected. Finally, the code 
segment, and the next operator for the procedure exited to, are 
accessed via the RCW. Operation resumes at the point following 
the procedure call. 

After such a procedure exit in the example, we are at line 21 in 
the program of Figure 9.S and the situation is again very similar to 
that shown in Figure 9.7. 

Figures 9.8-9.10 indicate how recursive calls on procedures are 
handled. In Figure 9.10 there are two activation records for proce
dure Pl. The way in which Display Registers are manipulatedl at 
entry and exit ensures that the correct activation record-that asso
ciated with the most deeply nested call on the procedure-is always 
accessed for the addressing space of the procedure. For example, 
any reference to X, T, or Y in procedure PI (in the example illus
trated by Figure 9.10) will access X', T', or Y'. Note that the IRVVS 
associated with T' accesses T2-i.e., accesses something outside the 
normal addressing environment of procedure Pl. Likewise, the copy 
descriptor associated with Y' accesses the Dope Vector for A2, 
which is also outside the normal addressing environment of Pl. 
This illustrates the usage of the IRWS and the copy descriptor in 
handling Algol U call-by-name" parameters. 
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9.5 HARDWARE INTERRUPTS 

We have noted that interrupts are handled essentially as forced 
procedure calls. The interrupted processor adjusts the active stack 
with which it is associated. The effect is shown in Figure 9.11, 
which demonstrates an interrupt occurring immediately after the 
situation shown in Figure 9.10. The interrupted procedure appears 
to have called a system procedure, here called int, passing two 
parameters, parI and par2 .. 

The interrupt procedure is written as part of the Operating Sys
tem. Its pew appears at a location (actually Do + 3) known to the 
hardware. Its function is to handle interrupts, whose natures are 
indicated by the parameters parI and par2, mostly by calling fur
ther system procedures which have been written to handle specific 
kinds of interrupts. On completion of interrupt handling, the Inter
rupt Procedure is exited like any other procedure: control thus 
returns to the point of interruption--the (theoretical) point of call. 

9.6 MULTIPLE PROCESSORS 

The B6700 may have more than one processor. Figure 9.12 dem
onstrates two jobs (A and. B)-shown as reentrant for convenience 
-and running on two processors. It should be self-explanatory. 

9.7 JOB AND TASK INITIATION 

To return to the earlier discussion of Figure 9.1. The ways in 
which jobs are "fired up" and the system switches a processor 
between jobs and/or tasks (between stacks [14]) have yet to be 
described. Henceforth we shall refer to different computations 
being made active or inactive as tasks, but since a task may be the 
main task of a job, we shall thereby incur no loss of generality. 

Figure 9.13 shows the formats of an active and an inactive stack 
which represent, of course, an active and inactive task, respectively. 
It will be seen that the active stack is characterized by the presence 
of processor registers (Displays, F, SL, S and BaS) which point into 
it and by the fact that the lowest word in the stack is a single pre-



112 

r 

Stack 
Trunk 

9 SOME HARDWARE DETAILS OF PROCEDURE ENTRY 

~---1II!t=m~tt~,--,-i F RegistE~ 

// ~----~--~--~~ / 

DISP / Space for P2 KDF 
/ ,JM5cWI ILL=41 _ 
I (r 
: DIrP Space for PI DF 

r 

I \ 
DISP 

\ I 
\ I 

\ DtSP ~~~~~:a~~~~~:~,:;:'~1 
\ I 
\ \ 
\ \ 

\ \ .. 1e~~~~~21 ,~ ...... 

/ 
f 

I 

DI~P T T 
\ 
\ 

' .......... To Segment 
Dictionary Stack 

Display 

Fl 
t------Jg: 

Figure 9.11 Interrupted stack format. An interrupt has occurred immedi
ately following the situation shown in Figure 9.10, i.e., just before the start of 
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Inacti ve Stack j 

cision operand (i.e., with a tag of 0) containing a number which 
uniquely identifies the processor. There are no processor registers 
pointing into the inactive stack, and its first word is a so-called 
Top-of-Stack Control Word (TOSCW). 

It will be recalled that all stacks are linked into the Stack Vector 
and that each stack is uniquely identified by its Stack Number. To 
switch a processor between tasks, the active task has merely to 
issue (in a higher level language) such statements as Continue(New-
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Task). New-Task is a task identifier which translates ultimately 
to a Stack Number. The compilation of such a Continue statement 
produces machine code of the form Mvst(nt), where Mvst repre
sents the Move Stack machine operator and nt .is the Stack Num
ber corresponding to the task identified by New-Task. 

[Note: The switching between jobs and MCP tasks (as distinct 
from the switching between user tasks) is a little different from 
that implied by such as Continue statements. However, the differ
ences are not important.] 

The TOSCW contains--as will be seen in Figure 9.13-pointers 
to the settings of the 5 and F registers (actually these pointers [DS 
and DF] are in the form of offsets to allow for relocatability of 
stacks), at the time the task last went inactive, together with the 
settings of various flip-flops (FF) at that time. 

The switching of control between tasks is accomplished by a 
system procedure-called "task-switcher" in the diagram. The 
call on the procedure is generated when a compiler sees a state
ment such as the Continue statement. The las!t two operators in 
the code stream for task switches are Mvst and Exit. Exit is the 
operator generated by the terminating "End" of'the procedure. The 
Mvst operator does the following: (1) stores pointers to the 5 and 
F register settings and various flip-flop settings [n the first word of 
the active stack (shown as stack i in Figure 9.13); (2) changes the 
tag of the first word-it is no longer a single-precision operand but 
is now a TOSCW; (3) sets the 5 and F registers and various flip
flops from the fields in the TOSCW of the inactive stack (shown as 
stack j in Figure 9.13); (4) sets the first word in this stack to a 
Single Precision Operand containing the value of the processor ID; 
and (5) sets the BaS and SL registers from element j of the Stack 
Vector. 

At this point, the previously active stack is now inactive and the 
previously inactive stack is active. It is important to understand that 
the newly active stack was previously rendered inactive by an 
exactly equivalent swapping. Hence, the Exit operator next encoun
tered will cause an exit from task-switcher into the procedure of 
the newly active task that contained the Continue statement re
sponsible for its deactivation. It should be appreciated that all the 
mechanisms of procedure exit-Display Update and correct code 
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access-as described earlier are set in motion and that therefore 
the newly active task will proceed to operate at the point of its 
previous deactivation. 

It should be further appreciated that the newly inactive task is 
now a candidate for reactivation via a (Mvst, Exit) operator pair 
issued by some other task. The mechanism is perfectly symmetrical. 

There still remains the question of how jobs and tasks are first 
presented to the system. Figure 9.14 demonstrates this situation for 
a Job. The system builds a Segment Dictionary and a Job Stack and 
links the Job Stack into the queue of tasks ready to run. There .are 
two activation records in the Job Stack. The lowest one is fo:r a 
system procedure called run. The stack is made to look as if a 
named parameter, referring to the pew for the outer block of the 
task to be initiated has been passed to run. 

When the task is chosen from the queue of tasks ready to r1lln, 
some other task issues a [Mvst(nt), Exit] pair, as described above, 
where nt is the Stack Number of the new stack. The effect is to 
cause the system procedure run to be entered (actually to be exited 
to; the topmost activation record in the job stack is a dummy rec
ord). Run is coded to call the outer block of the new task. Hence, 
the final effect is as shown in Figure 9.15. 

When the task eventually terminates, an exit takes place, in the 
normal manner, to the procedure run. Run is therefore the primary 
system procedure for initiation and termination of tasks. It can 
take care of all the accounting and housekeeping functions. Like 
all other procedures, run is re-entrant and therefore has only one 
code segment even though all tasks have their lowest activaHon 
record associated with run. 

If a task terminates abnormally, then the expected exit from its 
outermost block into procedure run will not occur. In this case, the 
system generates a "Go-To," from the procedure where the abnor
mality is detected, into run. Such a Go-To, sometimes called a Bad
Go-To, is implemented in a manner which will not be descrihed, 
such that all activation records above that for run appear to have 
been exited in the normal manner. [Note: Bad-Go-To's to proce
dures other than run, i.e., those not associated with abnormalities, 
are also handled in this manner.] Hence, the final effect is as if 
the outer block had been exited in the normal manner. Run, how-
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ever, which is aware of the abnormal conditiQn, can take action 
appropriate to the particular abnormality. 

The above is primarily concerned with the activation of, and 
switching between, Mep tasks and the initial tasks of jobs. Only 
scant mention has been made of tasks-such as. coroutines-which 
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Figure 9.15 Job Stack and Segment Dictionary Stack for a job which has 
just started running. Only active displacement links are shown. 

have been created by other tasks via syntactical structures in higher 
level applications languages (e.g., B6700 Algol [12]). It turns out 
that all tasks, whether they be "primary" or offspring, are initi
ated and terminated utilizing the procedure run as described in 
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this section. All tasks are deactivated and rea~tivated using the 
system procedure task-switcher again as described in this section. 
The ways in which an offspring task may access variables in its 
ancestors-via Display Registers is described primarily in Chap
ter 4. At various points in the text it was pointed out how the 
mechanism of Display Update, as described in Section 9.4 is in
volved in switching between tasks and how this. mechanism effects 
the change of addressing environment necessitated by such a switch. 
Such remarks are again applicable to all tasks no matter what their 
origin. Section 9.3 describes the use of the Stuffed Indirect Refer
ence Word in addressing across stacks-across. tasks-and again 
it will be seen how the nature of such tasks is unimportant to the 
discussion. 

In short, tasks are handled in a perfectly uniform and general 
manner. When this is realized, the ways in which the mechanisms 
described in this chapter (and discussed in connection with a fairly 
trivial task family) are appropriate to the handling of complex situ
ations should be readily understood. 
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30,102 
Multics, 6, 89 
Multiple (site of) activity algo

rithms,14 
Multiple processors in B6700, 111 
Multiprogramming, 4 

and multiprocessing, 2 
Mutual exclusion, 13 
Mvst (move stack) operator, 115 
Myself.status change, 48 

N 
Name parameter, 102 
Nesting of environments, 19 

o 
Offspring task, 15, 20 

creation of, 39-40 
Operand stacks, 22 
Operating system(s) 

hierarchy of, 90 
recursively defined, 89 

p 

P-field (presence bit), 97 
Paging on demand in B6700, 97 
PAL,l 
Partner attribute, 49 

INDEX 

PCW (Procedure Control Word), 102 
Performance of user programs, 83 
PLl1, 1,79 
Pointer, variables of type, 79 
Presence bit, 17, 97 
Primary descriptors to arrays, 34 
Procedure, II i" pairs, 17 
Procedure calls, 23, 27-28 

and returns, 15 
Procedure Control Word, 106 
Procedure or label variables, assign-

ment of values to, 79 
Procedure pointer, 29 
Process interrupts, 32 
Process statement, 37 
Processor 

registers, 111 
switching, 114 

Procure intrinsic, 75 
Program execution, semantic model 

of,l 
Program segments, 4 
Protection 

against bounds errors, 84 
built-in, 85 

Pure program code, 107 

Q 
Q thread (queue thread), 40-41 
Queueing of software interrupts, 63 

R 
R head (head of ready list), 41 
RANDELL, B., and KUEHNER, C. J., 90, 

124 
RANDELL, B., and RUSSELL, L. J., 19, 

124 
RCW, 30 
Ready list, 42 
Record contours, prime labeling 

convention for, 11 
Record of execution, 6, 9, 35 

illustration of, 13 
Recursive call, stack structure fol', 

108 
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Recursive procedure call, 102 
Re-enabled interrupts, 73 
Resource allocation, 89-90 
Resource-oriented synchronization 

primitives, 75 
Restoring state of interrupted 

program, 32 
Retention discipline, 59, 80 
Return Control Word, RCW, 30, 109 
Return information, 23 
Return label, 23, 31 
Rice #2 computer design, 1 
Run system procedure, 117-119 

5 
S register, 102, 111, 115 
Scopes of program identifiers, 10 
SD (Segment Descriptor), 102 
Segment Descriptors, 97 
Segment dictionary, 17,34,98 

pointer, Dl, 20 
stack,106 

Segment number, 30, 31 
Segment pointer, 17 
Segmentation, Burroughs concept of, 

6 
Semantic models,S 
Semaphores, 89 
Sharing of programs and data, 35 
SIQ (software interrupt queue), 72 
Site of activity, 13, 15 
SL (stack limit) regiS'ter, 100, 111, 115 
Software interrupt(s), 63 

cause intrinsic handling of requests 
for,7!0 

data structures for, 69-73 
disabling of, 63 
illustrative example, 65-68 
primitives for, 89 
queue, 70 

SP (single precision), 102 
Stack hardware, 7 
Stack limit register, 100 
Stack management disciplines, 59 

Stack number, 69, 95 
Stack number field 

in Displacement link, 109 
of PCW, 106 
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Stack retention discipline, implemen-
tation of, 62 

Stack segment, 19 
Stack structure and ownership, 57-62 
Stack tree, 98 
Stack trunk, 20, 34, 98 

pointer, Do, 20 
Stack Vector, 95 
Stacked interrupts, 70 
stacks 

formats for active and inactive, 
111-115 

relocatability of, 115 
Static chain, 19 
Static link, 20 
Static links betwElen MSCW's, 109 
Static structure of an algorithm, 7 
Status attribute, 47, 51 

system response to change in, 48 
Storage control, 77-81 

hierarchy of, 91 
Stream controller problem, 50-55 
Stuffed Indirect Reference Word 

(lRWS),98 
Syllables, 84 
SYMBOL computer design, 1 
Synchronization primitives, 37, 89 
Synchronous com,putation, 49 
System data struc;ture for B6700, 94 
System interrupts, 32 
System intrinsics, 25, 26 

as part of working set, 34 

T 
Tag notation, explanation of, 102 
Tagging for single and double pre

cision,97 
Tags, 92 
Task(s),15 

accessing environment of, 58 
creating and executing of, 15 
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Task(s) (Continued) 
creation and coordination of, 37 
execution state of, 47 
queue state of, 40 
suspension of, 48 
which may alter attributes of 

other tasks, 46 
Task attributes, 44 

initial values for, 47 
Task declaration, 46 
Task identifier, 46-47 
Task information area, 46 
Task termination, abnormat 116 
Task variable, 45 

structure of, 46 
Tasking, 15, 37-55 

case where ancestor terminates 
before its offspring, 60 

as defined in PL/1, 60 
as system-provided facility, 60 

Task-switcher system procedure, 115-
119 

Taskvalue attribute, 55 
Terminate procedure, macro defini

tion for, 67 
Top of stack, 94 

Top-of-Stack Control Word, 114 
TOSCW (Top of Stack Control 

Word),102 
TOSCW details, 114-115 

V 
Value parameter,102 
Variable length segments, 97 
Variables, lifetimes of, 79 

INDEX 

Vector operations, hardware sup·· 
ported,91 

Virtual memory, 6, 17 
Virtual processor, 14, 20 

mapping from actual to, 40 

w 
Wait list, 42 
Wait list head, substructure of, 44 
Wait system intrinsic, 38, 62 
Working sets, 4, 5, 32 

x 
X register, 100 

y 

Y register, 100 
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